Massively parallel de novo protein design for targeted therapeutics
Author
Abstract
Suggested Citation
DOI: 10.1038/nature23912
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.
- Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Edin Muratspahić & Kristine Deibler & Jianming Han & Nataša Tomašević & Kirtikumar B. Jadhav & Aina-Leonor Olivé-Marti & Nadine Hochrainer & Roland Hellinger & Johannes Koehbach & Jonathan F. Fay & Mo, 2023. "Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Sasha B. Ebrahimi & Devleena Samanta, 2023. "Engineering protein-based therapeutics through structural and chemical design," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zengping Duan & Chuilian Kong & Shihui Fan & Chuanliu Wu, 2024. "Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Nathaniel R. Bennett & Brian Coventry & Inna Goreshnik & Buwei Huang & Aza Allen & Dionne Vafeados & Ying Po Peng & Justas Dauparas & Minkyung Baek & Lance Stewart & Frank DiMaio & Steven Munck & Savv, 2023. "Improving de novo protein binder design with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:550:y:2017:i:7674:d:10.1038_nature23912. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.