IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46394-6.html
   My bibliography  Save this article

Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin

Author

Listed:
  • Ruoyu Zhou

    (Fudan University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Liuqing He

    (Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study
    Westlake University)

  • Jiahao Zhang

    (Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Xiaofeng Zhang

    (Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Yanyan Li

    (Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Xiechao Zhan

    (Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

  • Liang Tao

    (Fudan University
    Westlake Laboratory of Life Sciences and Biomedicine
    Westlake University
    Westlake Institute for Advanced Study)

Abstract

Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2SPD, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.

Suggested Citation

  • Ruoyu Zhou & Liuqing He & Jiahao Zhang & Xiaofeng Zhang & Yanyan Li & Xiechao Zhan & Liang Tao, 2024. "Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46394-6
    DOI: 10.1038/s41467-024-46394-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46394-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46394-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Chen & Ji Zeng & Zheng Liu & Hatim Thaker & Siyu Wang & Songhai Tian & Jie Zhang & Liang Tao & Craig B. Gutierrez & Li Xing & Ralf Gerhard & Lan Huang & Min Dong & Rongsheng Jin, 2021. "Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Jessica Reineke & Stefan Tenzer & Maja Rupnik & Andreas Koschinski & Oliver Hasselmayer & André Schrattenholz & Hansjörg Schild & Christoph von Eichel-Streiber, 2007. "Autocatalytic cleavage of Clostridium difficile toxin B," Nature, Nature, vol. 446(7134), pages 415-419, March.
    3. Xingxing Li & Liuqing He & Jianhua Luo & Yangling Zheng & Yao Zhou & Danyang Li & Yuanyuan Zhang & Zhenrui Pan & Yanyan Li & Liang Tao, 2022. "Paeniclostridium sordellii hemorrhagic toxin targets TMPRSS2 to induce colonic epithelial lesions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yao Zhou & Xiechao Zhan & Jianhua Luo & Diyin Li & Ruoyu Zhou & Jiahao Zhang & Zhenrui Pan & Yuanyuan Zhang & Tianhui Jia & Xiaofeng Zhang & Yanyan Li & Liang Tao, 2023. "Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Liang Tao & Jie Zhang & Paul Meraner & Alessio Tovaglieri & Xiaoqian Wu & Ralf Gerhard & Xinjun Zhang & William B. Stallcup & Ji Miao & Xi He & Julian G. Hurdle & David T. Breault & Abraham L. Brass &, 2016. "Frizzled proteins are colonic epithelial receptors for C. difficile toxin B," Nature, Nature, vol. 538(7625), pages 350-355, October.
    6. Songhai Tian & Xiaozhe Xiong & Ji Zeng & Siyu Wang & Benjamin Jean-Marie Tremblay & Peng Chen & Baohua Chen & Min Liu & Pengsheng Chen & Kuanwei Sheng & Daniel Zeve & Wanshu Qi & David T. Breault & Cé, 2022. "Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchen Lv & Yuanyuan Zhang & Ke Sun & Qi Yang & Jianhua Luo & Liang Tao & Peilong Lu, 2024. "De novo design of mini-protein binders broadly neutralizing Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Xingxing Li & Liuqing He & Jianhua Luo & Yangling Zheng & Yao Zhou & Danyang Li & Yuanyuan Zhang & Zhenrui Pan & Yanyan Li & Liang Tao, 2022. "Paeniclostridium sordellii hemorrhagic toxin targets TMPRSS2 to induce colonic epithelial lesions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Alexander Belyy & Philipp Heilen & Philine Hagel & Oliver Hofnagel & Stefan Raunser, 2023. "Structure and activation mechanism of the Makes caterpillars floppy 1 toxin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Songhai Tian & Xiaozhe Xiong & Ji Zeng & Siyu Wang & Benjamin Jean-Marie Tremblay & Peng Chen & Baohua Chen & Min Liu & Pengsheng Chen & Kuanwei Sheng & Daniel Zeve & Wanshu Qi & David T. Breault & Cé, 2022. "Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46394-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.