IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52063-5.html
   My bibliography  Save this article

Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering

Author

Listed:
  • Yunpeng Zheng

    (Tsinghua University
    Fuzhou University)

  • Qinghua Zhang

    (Chinese Academy of Sciences)

  • Caijuan Shi

    (Chinese Academy of Sciences)

  • Zhifang Zhou

    (Tsinghua University)

  • Yang Lu

    (Tsinghua University)

  • Jian Han

    (Tsinghua University)

  • Hetian Chen

    (Tsinghua University)

  • Yunpeng Ma

    (Tsinghua University)

  • Yujun Zhang

    (Chinese Academy of Sciences)

  • Changpeng Lin

    (École Polytechnique Fédérale de Lausanne)

  • Wei Xu

    (Chinese Academy of Sciences
    Via dei Sabelli 119A)

  • Weigang Ma

    (Tsinghua University)

  • Qian Li

    (Tsinghua University)

  • Yueyang Yang

    (Tsinghua University)

  • Bin Wei

    (Tsinghua University
    Henan Polytechnic University)

  • Bingbing Yang

    (Tsinghua University
    Chinese Academy of Sciences)

  • Mingchu Zou

    (Tsinghua University)

  • Wenyu Zhang

    (Tsinghua University)

  • Chang Liu

    (Tsinghua University)

  • Lvye Dou

    (Tsinghua University)

  • Dongliang Yang

    (Chinese Academy of Sciences)

  • Jin-Le Lan

    (Beijing University of Chemical Technology)

  • Di Yi

    (Tsinghua University)

  • Xing Zhang

    (Tsinghua University)

  • Lin Gu

    (Tsinghua University)

  • Ce-Wen Nan

    (Tsinghua University)

  • Yuan-Hua Lin

    (Tsinghua University)

Abstract

Thermoelectrics converting heat and electricity directly attract broad attentions. To enhance the thermoelectric figure of merit, zT, one of the key points is to decouple the carrier-phonon transport. Here, we propose an entropy engineering strategy to realize the carrier-phonon decoupling in the typical SrTiO3-based perovskite thermoelectrics. By high-entropy design, the lattice thermal conductivity could be reduced nearly to the amorphous limit, 1.25 W m−1 K−1. Simultaneously, entropy engineering can tune the Ti displacement, improving the weighted mobility to 65 cm2 V−1 s−1. Such carrier-phonon decoupling behaviors enable the greatly enhanced μW/κL of ~5.2 × 103 cm3 K J−1 V−1. The measured maximum zT of 0.24 at 488 K and the estimated zT of ~0.8 at 1173 K in (Sr0.2Ba0.2Ca0.2Pb0.2La0.2)TiO3 film are among the best of n-type thermoelectric oxides. These results reveal that the entropy engineering may be a promising strategy to decouple the carrier-phonon transport and achieve higher zT in thermoelectrics.

Suggested Citation

  • Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52063-5
    DOI: 10.1038/s41467-024-52063-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52063-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52063-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingbing Yang & Qinghua Zhang & Houbing Huang & Hao Pan & Wenxuan Zhu & Fanqi Meng & Shun Lan & Yiqian Liu & Bin Wei & Yiqun Liu & Letao Yang & Lin Gu & Long-Qing Chen & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Engineering relaxors by entropy for high energy storage performance," Nature Energy, Nature, vol. 8(9), pages 956-964, September.
    2. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yi Han & Xiangyang Liu & Qiqi Zhang & Muzhang Huang & Yi Li & Wei Pan & Peng-an Zong & Lieyang Li & Zesheng Yang & Yingjie Feng & Peng Zhang & Chunlei Wan, 2022. "Ultra-dense dislocations stabilized in high entropy oxide ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    3. Jiaojiao Hu & Qiankun Yang & Shuya Zhu & Yong Zhang & Dingshun Yan & Kefu Gan & Zhiming Li, 2023. "Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Xinhui Li & Bo Liu & Jian Wang & Shuxuan Li & Xin Zhen & Jiapeng Zhi & Junjie Zou & Bei Li & Zhonghui Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2024. "High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Lu Yang & Zhiyu Zhao & Boshi Tian & Meiqi Yang & Yushan Dong & Bingchen Zhou & Shili Gai & Ying Xie & Jun Lin, 2024. "A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Wei Li & Zhong-Hui Shen & Run-Lin Liu & Xiao-Xiao Chen & Meng-Fan Guo & Jin-Ming Guo & Hua Hao & Yang Shen & Han-Xing Liu & Long-Qing Chen & Ce-Wen Nan, 2024. "Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52063-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.