Author
Listed:
- Meiling Chen
(Harbin Institute of Technology)
- Wenhao Liu
(Chinese Academy of Sciences)
- Pengcheng Ding
(Harbin Institute of Technology
Harbin Institute of Technology)
- Fengwu Guo
(Chinese Academy of Sciences)
- Zhuo Li
(Harbin Institute of Technology)
- Yanghan Chen
(Harbin Institute of Technology
Harbin Institute of Technology)
- Wei Yi
(Harbin Institute of Technology)
- Ye Sun
(Harbin Institute of Technology)
- Jianchen Lu
(Kunming University of Science and Technology)
- Lev Kantorovich
(The Strand)
- Miao Yu
(Harbin Institute of Technology
University of Electronic Science and Technology)
Abstract
The photoinduced semiconductor-to-metal transition (PSMT) unveils crucial photodynamic mechanisms and holds great promise for information storage, sensing, optoelectronics, optical switches, etc. All previously reported PSMTs have occurred between two structural phases of the same material, lacking real-space evidence at the atomic or molecular level. Herein, we report atomic-scale observations of a photoinduced ‘face changing’: light irradiation transforms a semiconductor copper selenide (Cu2Se) surface layer on Cu(111) into a well-defined metallic Cu layer. Se atoms sink to form a new Cu2Se sublayer, while the original subsurface Cu atoms are lifted to the top layer. The Cu2Se-to-Cu transition barrier is significantly lower in the excited state compared to the ground state. Thermoactivation enables the reverse transition. The photoinduced Cu2Se-to-Cu and thermoactivated Cu-to-Cu2Se transitions are highly reversible. This work, which demonstrates PSMT between two distinct materials and photo-driven interlayer atom migration, unlocks an unconventional and intriguing route for PSMT and surface modification technologies.
Suggested Citation
Meiling Chen & Wenhao Liu & Pengcheng Ding & Fengwu Guo & Zhuo Li & Yanghan Chen & Wei Yi & Ye Sun & Jianchen Lu & Lev Kantorovich & Miao Yu, 2025.
"Semiconductor-to-metal surface reconstruction in copper selenide/copper heterostructures steered by photoinduced interlayer atom migration,"
Nature Communications, Nature, vol. 16(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57012-4
DOI: 10.1038/s41467-025-57012-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57012-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.