IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30260-4.html
   My bibliography  Save this article

Ultra-dense dislocations stabilized in high entropy oxide ceramics

Author

Listed:
  • Yi Han

    (Tsinghua University)

  • Xiangyang Liu

    (Tsinghua University)

  • Qiqi Zhang

    (National Center for Electron Microscopy in Beijing)

  • Muzhang Huang

    (Tsinghua University)

  • Yi Li

    (Tsinghua University)

  • Wei Pan

    (Tsinghua University)

  • Peng-an Zong

    (Tsinghua University)

  • Lieyang Li

    (Tsinghua University)

  • Zesheng Yang

    (Tsinghua University)

  • Yingjie Feng

    (Tsinghua University)

  • Peng Zhang

    (Tsinghua University
    Beijing University of Technology)

  • Chunlei Wan

    (Tsinghua University)

Abstract

Dislocations are commonly present and important in metals but their effects have not been fully recognized in oxide ceramics. The large strain energy raised by the rigid ionic/covalent bonding in oxide ceramics leads to dislocations with low density (∼106 mm−2), thermodynamic instability and spatial inhomogeneity. In this paper, we report ultrahigh density (∼109 mm−2) of edge dislocations that are uniformly distributed in oxide ceramics with large compositional complexity. We demonstrate the dislocations are progressively and thermodynamically stabilized with increasing complexity of the composition, in which the entropy gain can compensate the strain energy of dislocations. We also find cracks are deflected and bridged with ∼70% enhancement of fracture toughness in the pyrochlore ceramics with multiple valence cations, due to the interaction with enlarged strain field around the immobile dislocations. This research provides a controllable approach to establish ultra-dense dislocations in oxide ceramics, which may open up another dimension to tune their properties.

Suggested Citation

  • Yi Han & Xiangyang Liu & Qiqi Zhang & Muzhang Huang & Yi Li & Wei Pan & Peng-an Zong & Lieyang Li & Zesheng Yang & Yingjie Feng & Peng Zhang & Chunlei Wan, 2022. "Ultra-dense dislocations stabilized in high entropy oxide ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30260-4
    DOI: 10.1038/s41467-022-30260-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30260-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30260-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Butz & Christian Dolle & Florian Niekiel & Konstantin Weber & Daniel Waldmann & Heiko B. Weber & Bernd Meyer & Erdmann Spiecker, 2014. "Dislocations in bilayer graphene," Nature, Nature, vol. 505(7484), pages 533-537, January.
    2. Lixin Sun & Dario Marrocchelli & Bilge Yildiz, 2015. "Edge dislocation slows down oxide ion diffusion in doped CeO2 by segregation of charged defects," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    3. Abhishek Sarkar & Leonardo Velasco & Di Wang & Qingsong Wang & Gopichand Talasila & Lea de Biasi & Christian Kübel & Torsten Brezesinski & Subramshu S. Bhattacharya & Horst Hahn & Ben Breitung, 2018. "High entropy oxides for reversible energy storage," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jiaojiao Hu & Qiankun Yang & Shuya Zhu & Yong Zhang & Dingshun Yan & Kefu Gan & Zhiming Li, 2023. "Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    2. Jihyun Baek & Md Delowar Hossain & Pinaki Mukherjee & Junghwa Lee & Kirsten T. Winther & Juyoung Leem & Yue Jiang & William C. Chueh & Michal Bajdich & Xiaolin Zheng, 2023. "Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jose Antonio Garrido Torres & Vahe Gharakhanyan & Nongnuch Artrith & Tobias Hoffmann Eegholm & Alexander Urban, 2021. "Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Lei Su & Huaixun Huyan & Abhishek Sarkar & Wenpei Gao & Xingxu Yan & Christopher Addiego & Robert Kruk & Horst Hahn & Xiaoqing Pan, 2022. "Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Peter Meisenheimer & Hongrui Zhang & David Raftrey & Xiang Chen & Yu-Tsun Shao & Ying-Ting Chan & Reed Yalisove & Rui Chen & Jie Yao & Mary C. Scott & Weida Wu & David A. Muller & Peter Fischer & Robe, 2023. "Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yixiu Luo & Luchao Sun & Jiemin Wang & Tiefeng Du & Cui Zhou & Jie Zhang & Jingyang Wang, 2023. "Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Kai Wang & Weibo Hua & Xiaohui Huang & David Stenzel & Junbo Wang & Ziming Ding & Yanyan Cui & Qingsong Wang & Helmut Ehrenberg & Ben Breitung & Christian Kübel & Xiaoke Mu, 2023. "Synergy of cations in high entropy oxide lithium ion battery anode," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30260-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.