IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51772-1.html
   My bibliography  Save this article

A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy

Author

Listed:
  • Lu Yang

    (Harbin Engineering University
    Chinese Academy of Sciences)

  • Zhiyu Zhao

    (the First Affiliated Hospital of Harbin Medical University)

  • Boshi Tian

    (Harbin Engineering University)

  • Meiqi Yang

    (Harbin Engineering University)

  • Yushan Dong

    (Harbin Engineering University)

  • Bingchen Zhou

    (Harbin Engineering University)

  • Shili Gai

    (Harbin Engineering University)

  • Ying Xie

    (Heilongjiang University)

  • Jun Lin

    (Chinese Academy of Sciences)

Abstract

Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like Cu2−xSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of Cu2−xSe HNSs, featuring rich copper vacancies (VCu), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of Cu2−xSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.

Suggested Citation

  • Lu Yang & Zhiyu Zhao & Boshi Tian & Meiqi Yang & Yushan Dong & Bingchen Zhou & Shili Gai & Ying Xie & Jun Lin, 2024. "A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51772-1
    DOI: 10.1038/s41467-024-51772-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51772-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51772-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xue Yuan & Yong Kang & Jinrui Dong & Ruiyan Li & Jiamin Ye & Yueyue Fan & Jingwen Han & Junhui Yu & Guangjian Ni & Xiaoyuan Ji & Dong Ming, 2023. "Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
    4. Huilin You & Siqi Li & Yulong Fan & Xuyun Guo & Zezhou Lin & Ran Ding & Xin Cheng & Hao Zhang & Tsz Woon Benedict Lo & Jianhua Hao & Ye Zhu & Hwa-Yaw Tam & Dangyuan Lei & Chi-Hang Lam & Haitao Huang, 2022. "Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    3. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    4. Li Peng & Hongjun Wu & Qianjun Mao, 2022. "Visualizing Experimental Study of the Effect of Inclination Angle on the Melting Performance for an Energy Storage Tank," Energies, MDPI, vol. 15(19), pages 1-11, October.
    5. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    6. Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
    7. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
    8. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    9. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    11. An Cao & Yi Gong & Dilong Liu & Fan Yang & Yulong Fan & Yinghui Guo & Xingyou Tian & Yue Li, 2024. "Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Qiao, Yancong & Liu, Wei & Pan, Yao & Gong, Mengmeng & Liu, Zhichun, 2024. "Design and decoupling analysis of Thermal–Electric energy comprehensive utilization scheme based on “diamond” active cooling thermal protection system for hypersonic vehicle," Energy, Elsevier, vol. 294(C).
    13. Malkeshkumar Patel & Hyeong-Ho Park & Priyanka Bhatnagar & Naveen Kumar & Junsik Lee & Joondong Kim, 2024. "Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Luo, Ding & Wang, Ruochen & Yan, Yuying & Sun, Zeyu & Zhou, Weiqi & Ding, Renkai, 2021. "Comparison of different fluid-thermal-electric multiphysics modeling approaches for thermoelectric generator systems," Renewable Energy, Elsevier, vol. 180(C), pages 1266-1277.
    15. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
    16. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    17. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    18. Mao, Qianjun & Hu, Xinlei & Li, Tao, 2022. "Study on heat storage performance of a novel vertical shell and multi-finned tube tank," Renewable Energy, Elsevier, vol. 193(C), pages 76-88.
    19. Hanjie Zhang & Yitong Zhang & Yushi Zhang & Hanyue Li & Meitong Ou & Yongkang Yu & Fan Zhang & Huijuan Yin & Zhuo Mao & Lin Mei, 2024. "Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51772-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.