IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41481-6.html
   My bibliography  Save this article

Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles

Author

Listed:
  • Jiaojiao Hu

    (Central South University)

  • Qiankun Yang

    (Central South University)

  • Shuya Zhu

    (Central South University)

  • Yong Zhang

    (Central South University)

  • Dingshun Yan

    (Central South University)

  • Kefu Gan

    (Central South University)

  • Zhiming Li

    (Central South University
    Central South University)

Abstract

Despite the extremely high hardness of recently proposed high-entropy carbides (HECs), the low fracture toughness limits their applications in harsh mechanical environment. Here, we introduce a metastability engineering strategy to achieve superhard HECs with enhanced toughness via in-situ metastable particles. This is realized by developing a (WTaNbZrTi)C HEC showing a solid solution matrix with uniformly dispersed in-situ tetragonal and monoclinic ZrO2 particles. Apart from a high hardness of 21.0 GPa, the HEC can obtain an enhanced fracture toughness of 5.89 MPa·m1/2, significantly exceeding the value predicted by rule of mixture and that of other reported HECs. The toughening effect is primarily attributed to the transformation of the metastable tetragonal ZrO2 particles under mechanical loading, which promotes crack tip shielding mechanisms including crack deflection, crack bridging and crack branching. The work demonstrates the concept of using in-situ metastable particles for toughening bulk high-entropy ceramics by taking advantage of their compositional flexibility.

Suggested Citation

  • Jiaojiao Hu & Qiankun Yang & Shuya Zhu & Yong Zhang & Dingshun Yan & Kefu Gan & Zhiming Li, 2023. "Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41481-6
    DOI: 10.1038/s41467-023-41481-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41481-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41481-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Esters & Corey Oses & David Hicks & Michael J. Mehl & Michal Jahnátek & Mohammad Delower Hossain & Jon-Paul Maria & Donald W. Brenner & Cormac Toher & Stefano Curtarolo, 2021. "Settling the matter of the role of vibrations in the stability of high-entropy carbides," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Pranab Sarker & Tyler Harrington & Cormac Toher & Corey Oses & Mojtaba Samiee & Jon-Paul Maria & Donald W. Brenner & Kenneth S. Vecchio & Stefano Curtarolo, 2018. "High-entropy high-hardness metal carbides discovered by entropy descriptors," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Zhiming Li & Konda Gokuldoss Pradeep & Yun Deng & Dierk Raabe & Cemal Cem Tasan, 2016. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, Nature, vol. 534(7606), pages 227-230, June.
    4. Yi Han & Xiangyang Liu & Qiqi Zhang & Muzhang Huang & Yi Li & Wei Pan & Peng-an Zong & Lieyang Li & Zesheng Yang & Yingjie Feng & Peng Zhang & Chunlei Wan, 2022. "Ultra-dense dislocations stabilized in high entropy oxide ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brennan R. Watkins & C. Haas Blacksher & Alyssa Stubbers & Gregory B. Thompson & Christopher R. Weinberger, 2024. "Insights into the anomalous hardness of the tantalum carbides from dislocation mobility," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    2. Arrigo Calzolari & Corey Oses & Cormac Toher & Marco Esters & Xiomara Campilongo & Sergei P. Stepanoff & Douglas E. Wolfe & Stefano Curtarolo, 2022. "Plasmonic high-entropy carbides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Brennan R. Watkins & C. Haas Blacksher & Alyssa Stubbers & Gregory B. Thompson & Christopher R. Weinberger, 2024. "Insights into the anomalous hardness of the tantalum carbides from dislocation mobility," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Hyun Chung & Won Seok Choi & Hosun Jun & Hyeon-Seok Do & Byeong-Joo Lee & Pyuck-Pa Choi & Heung Nam Han & Won-Seok Ko & Seok Su Sohn, 2023. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Daniel Utt & Subin Lee & Yaolong Xing & Hyejin Jeong & Alexander Stukowski & Sang Ho Oh & Gerhard Dehm & Karsten Albe, 2022. "The origin of jerky dislocation motion in high-entropy alloys," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Chongle Zhang & Xiangyun Bao & Mengyuan Hao & Wei Chen & Dongdong Zhang & Dong Wang & Jinyu Zhang & Gang Liu & Jun Sun, 2022. "Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Can Yildirim & Florian Flatscher & Steffen Ganschow & Alice Lassnig & Christoph Gammer & Juraj Todt & Jozef Keckes & Daniel Rettenwander, 2024. "Understanding the origin of lithium dendrite branching in Li6.5La3Zr1.5Ta0.5O12 solid-state electrolyte via microscopy measurements," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41481-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.