IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48338-6.html
   My bibliography  Save this article

Localized and global representation of prior value, sensory evidence, and choice in male mouse cerebral cortex

Author

Listed:
  • Kotaro Ishizu

    (University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku)

  • Shosuke Nishimoto

    (University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku
    University of Tokyo, 3-8-2, Komaba, Meguro-ku)

  • Yutaro Ueoka

    (University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku)

  • Akihiro Funamizu

    (University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku
    University of Tokyo, 3-8-2, Komaba, Meguro-ku)

Abstract

Adaptive behavior requires integrating prior knowledge of action outcomes and sensory evidence for making decisions while maintaining prior knowledge for future actions. As outcome- and sensory-based decisions are often tested separately, it is unclear how these processes are integrated in the brain. In a tone frequency discrimination task with two sound durations and asymmetric reward blocks, we found that neurons in the medial prefrontal cortex of male mice represented the additive combination of prior reward expectations and choices. The sensory inputs and choices were selectively decoded from the auditory cortex irrespective of reward priors and the secondary motor cortex, respectively, suggesting localized computations of task variables are required within single trials. In contrast, all the recorded regions represented prior values that needed to be maintained across trials. We propose localized and global computations of task variables in different time scales in the cerebral cortex.

Suggested Citation

  • Kotaro Ishizu & Shosuke Nishimoto & Yutaro Ueoka & Akihiro Funamizu, 2024. "Localized and global representation of prior value, sensory evidence, and choice in male mouse cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48338-6
    DOI: 10.1038/s41467-024-48338-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48338-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48338-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaina Lu & Cantin Ortiz & Daniel Fürth & Stephan Fischer & Konstantinos Meletis & Anthony Zador & Jesse Gillis, 2021. "Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain," PLOS Biology, Public Library of Science, vol. 19(7), pages 1-27, July.
    2. Ivan Voitov & Thomas D. Mrsic-Flogel, 2022. "Cortical feedback loops bind distributed representations of working memory," Nature, Nature, vol. 608(7922), pages 381-389, August.
    3. Hillel Adesnik & William Bruns & Hiroki Taniguchi & Z. Josh Huang & Massimo Scanziani, 2012. "A neural circuit for spatial summation in visual cortex," Nature, Nature, vol. 490(7419), pages 226-231, October.
    4. Joshua H. Siegle & Xiaoxuan Jia & Séverine Durand & Sam Gale & Corbett Bennett & Nile Graddis & Greggory Heller & Tamina K. Ramirez & Hannah Choi & Jennifer A. Luviano & Peter A. Groblewski & Ruweida , 2021. "Survey of spiking in the mouse visual system reveals functional hierarchy," Nature, Nature, vol. 592(7852), pages 86-92, April.
    5. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    6. Petr Znamenskiy & Anthony M. Zador, 2013. "Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination," Nature, Nature, vol. 497(7450), pages 482-485, May.
    7. Qiaojie Xiong & Petr Znamenskiy & Anthony M. Zador, 2015. "Selective corticostriatal plasticity during acquisition of an auditory discrimination task," Nature, Nature, vol. 521(7552), pages 348-351, May.
    8. Timothy D. Hanks & Charles D. Kopec & Bingni W. Brunton & Chunyu A. Duan & Jeffrey C. Erlich & Carlos D. Brody, 2015. "Distinct relationships of parietal and prefrontal cortices to evidence accumulation," Nature, Nature, vol. 520(7546), pages 220-223, April.
    9. Eun Jung Hwang & Jeffrey E. Dahlen & Madan Mukundan & Takaki Komiyama, 2017. "History-based action selection bias in posterior parietal cortex," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    10. I. Hachen & S. Reinartz & R. Brasselet & A. Stroligo & M. E. Diamond, 2021. "Dynamics of history-dependent perceptual judgment," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. Nicholas A. Steinmetz & Peter Zatka-Haas & Matteo Carandini & Kenneth D. Harris, 2019. "Distributed coding of choice, action and engagement across the mouse brain," Nature, Nature, vol. 576(7786), pages 266-273, December.
    12. Athena Akrami & Charles D. Kopec & Mathew E. Diamond & Carlos D. Brody, 2018. "Posterior parietal cortex represents sensory history and mediates its effects on behaviour," Nature, Nature, vol. 554(7692), pages 368-372, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Diksha Gupta & Brian DePasquale & Charles D. Kopec & Carlos D. Brody, 2024. "Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Frank Gelens & Juho Äijälä & Louis Roberts & Misako Komatsu & Cem Uran & Michael A. Jensen & Kai J. Miller & Robin A. A. Ince & Max Garagnani & Martin Vinck & Andres Canales-Johnson, 2024. "Distributed representations of prediction error signals across the cortical hierarchy are synergistic," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Sebastian Reinartz & Arash Fassihi & Maria Ravera & Luciano Paz & Francesca Pulecchi & Marco Gigante & Mathew E. Diamond, 2024. "Direct contribution of the sensory cortex to the judgment of stimulus duration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    9. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Matthijs N. Oude Lohuis & Jean L. Pie & Pietro Marchesi & Jorrit S. Montijn & Christiaan P. J. Kock & Cyriel M. A. Pennartz & Umberto Olcese, 2022. "Multisensory task demands temporally extend the causal requirement for visual cortex in perception," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Samuel López-Yépez Junior & Juliane Martin & Oliver Hulme & Duda Kvitsiani, 2021. "Choice history effects in mice and humans improve reward harvesting efficiency," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-33, October.
    13. Anne E. Urai & Tobias H. Donner, 2022. "Persistent activity in human parietal cortex mediates perceptual choice repetition bias," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Matthias Fritsche & Antara Majumdar & Lauren Strickland & Samuel Liebana Garcia & Rafal Bogacz & Armin Lak, 2024. "Temporal regularities shape perceptual decisions and striatal dopamine signals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Kaushik J Lakshminarasimhan & Alexandre Pouget & Gregory C DeAngelis & Dora E Angelaki & Xaq Pitkow, 2018. "Inferring decoding strategies for multiple correlated neural populations," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-40, September.
    18. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    19. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
    20. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48338-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.