IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47314-4.html
   My bibliography  Save this article

Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells

Author

Listed:
  • Kosuke Yamaguchi

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Xiaoying Chen

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Brianna Rodgers

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Fumihito Miura

    (Kyushu University Graduate School of Medical Sciences)

  • Pavel Bashtrykov

    (University of Stuttgart)

  • Frédéric Bonhomme

    (Chem4Life)

  • Catalina Salinas-Luypaert

    (CNRS, UMR 144)

  • Deis Haxholli

    (Ludwig-Maximilians-Universität München)

  • Nicole Gutekunst

    (University of Stuttgart)

  • Bihter Özdemir Aygenli

    (Helmholtz Zentrum München)

  • Laure Ferry

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Olivier Kirsh

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Marthe Laisné

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

  • Andrea Scelfo

    (CNRS, UMR 144)

  • Enes Ugur

    (Ludwig-Maximilians-Universität München)

  • Paola B. Arimondo

    (Chem4Life)

  • Heinrich Leonhardt

    (Ludwig-Maximilians-Universität München)

  • Masato T. Kanemaki

    (National Institute of Genetics, Research Organization of Information and Systems (ROIS)
    SOKENDAI
    The University of Tokyo)

  • Till Bartke

    (Helmholtz Zentrum München)

  • Daniele Fachinetti

    (CNRS, UMR 144)

  • Albert Jeltsch

    (University of Stuttgart)

  • Takashi Ito

    (Kyushu University Graduate School of Medical Sciences)

  • Pierre-Antoine Defossez

    (Université Paris Cité, CNRS, Epigenetics and Cell Fate)

Abstract

DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.

Suggested Citation

  • Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47314-4
    DOI: 10.1038/s41467-024-47314-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47314-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47314-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atsuya Nishiyama & Christopher B. Mulholland & Sebastian Bultmann & Satomi Kori & Akinori Endo & Yasushi Saeki & Weihua Qin & Carina Trummer & Yoshie Chiba & Haruka Yokoyama & Soichiro Kumamoto & Toru, 2020. "Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    2. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    3. Atsuya Nishiyama & Luna Yamaguchi & Jafar Sharif & Yoshikazu Johmura & Takeshi Kawamura & Keiko Nakanishi & Shintaro Shimamura & Kyohei Arita & Tatsuhiko Kodama & Fuyuki Ishikawa & Haruhiko Koseki & M, 2013. "Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication," Nature, Nature, vol. 502(7470), pages 249-253, October.
    4. María Arroyo & Florian D. Hastert & Andreas Zhadan & Florian Schelter & Susanne Zimbelmann & Cathia Rausch & Anne K. Ludwig & Thomas Carell & M. Cristina Cardoso, 2022. "Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation," Nature Communications, Nature, vol. 13(1), pages 1-28, December.
    5. Ina Rhee & Kurtis E. Bachman & Ben Ho Park & Kam-Wing Jair & Ray-Whay Chiu Yen & Kornel E. Schuebel & Hengmi Cui & Andrew P. Feinberg & Christoph Lengauer & Kenneth W. Kinzler & Stephen B. Baylin & Be, 2002. "DNMT1 and DNMT3b cooperate to silence genes in human cancer cells," Nature, Nature, vol. 416(6880), pages 552-556, April.
    6. Linfeng Gao & Max Emperle & Yiran Guo & Sara A. Grimm & Wendan Ren & Sabrina Adam & Hidetaka Uryu & Zhi-Min Zhang & Dongliang Chen & Jiekai Yin & Michael Dukatz & Hiwot Anteneh & Renata Z. Jurkowska &, 2020. "Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    7. Sabrina Adam & Hiwot Anteneh & Maximilian Hornisch & Vincent Wagner & Jiuwei Lu & Nicole E. Radde & Pavel Bashtrykov & Jikui Song & Albert Jeltsch, 2020. "DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    8. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    9. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Jafar Sharif & Masahiro Muto & Shin-ichiro Takebayashi & Isao Suetake & Akihiro Iwamatsu & Takaho A. Endo & Jun Shinga & Yoko Mizutani-Koseki & Tetsuro Toyoda & Kunihiro Okamura & Shoji Tajima & Kohzo, 2007. "The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA," Nature, Nature, vol. 450(7171), pages 908-912, December.
    11. Paul Adrian Ginno & Dimos Gaidatzis & Angelika Feldmann & Leslie Hoerner & Dilek Imanci & Lukas Burger & Frederic Zilbermann & Antoine H. F. M. Peters & Frank Edenhofer & Sébastien A. Smallwood & Arna, 2020. "A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    12. Kyohei Arita & Mariko Ariyoshi & Hidehito Tochio & Yusuke Nakamura & Masahiro Shirakawa, 2008. "Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism," Nature, Nature, vol. 455(7214), pages 818-821, October.
    13. Yanqi Chang & Lidong Sun & Kenji Kokura & John R. Horton & Mikiko Fukuda & Alexsandra Espejo & Victoria Izumi & John M. Koomen & Mark T. Bedford & Xing Zhang & Yoichi Shinkai & Jia Fang & Xiaodong Che, 2011. "MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a," Nature Communications, Nature, vol. 2(1), pages 1-10, September.
    14. Aisha Yesbolatova & Yuichiro Saito & Naomi Kitamoto & Hatsune Makino-Itou & Rieko Ajima & Risako Nakano & Hirofumi Nakaoka & Kosuke Fukui & Kanae Gamo & Yusuke Tominari & Haruki Takeuchi & Yumiko Saga, 2020. "The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Souleymane Abdoul-Azize & Rihab Hami & Gaetan Riou & Céline Derambure & Camille Charbonnier & Jean-Pierre Vannier & Monica L. Guzman & Pascale Schneider & Olivier Boyer, 2024. "Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Carolin Ector & Christoph Schmal & Jeff Didier & Sébastien De Landtsheer & Anna-Marie Finger & Francesca Müller-Marquardt & Johannes H. Schulte & Thomas Sauter & Ulrich Keilholz & Hanspeter Herzel & A, 2024. "Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.
    17. Hao Wang & R. Alejandro Sica & Gurbakhash Kaur & Phillip M. Galbo & Zhixin Jing & Christopher D. Nishimura & Xiaoxin Ren & Ankit Tanwar & Bijan Etemad-Gilbertson & Britta Will & Deyou Zheng & David Fo, 2024. "TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Ozge Saatci & Metin Cetin & Meral Uner & Unal Metin Tokat & Ioulia Chatzistamou & Pelin Gulizar Ersan & Elodie Montaudon & Aytekin Akyol & Sercan Aksoy & Aysegul Uner & Elisabetta Marangoni & Mathew S, 2023. "Toxic PARP trapping upon cAMP-induced DNA damage reinstates the efficacy of endocrine therapy and CDK4/6 inhibitors in treatment-refractory ER+ breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47314-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.