IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50117-2.html
   My bibliography  Save this article

Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers

Author

Listed:
  • Lingbin Xie

    (Nanjing University of Posts and Telecommunications
    Nanjing University of Posts and Telecommunications)

  • Longlu Wang

    (Nanjing University of Posts and Telecommunications)

  • Xia Liu

    (Qingdao University)

  • Jianmei Chen

    (Nanjing University of Posts and Telecommunications)

  • Xixing Wen

    (Nanjing University of Posts and Telecommunications)

  • Weiwei Zhao

    (Nanjing University of Posts and Telecommunications)

  • Shujuan Liu

    (Nanjing University of Posts and Telecommunications)

  • Qiang Zhao

    (Nanjing University of Posts and Telecommunications
    Nanjing University of Posts and Telecommunications)

Abstract

Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young’s modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm−2 over 1000 h with a negligible decay rate of 9.67 μV h−1.

Suggested Citation

  • Lingbin Xie & Longlu Wang & Xia Liu & Jianmei Chen & Xixing Wen & Weiwei Zhao & Shujuan Liu & Qiang Zhao, 2024. "Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50117-2
    DOI: 10.1038/s41467-024-50117-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50117-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50117-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Wang & Shuyang Dai & Xide Li & Jiarui Yang & David J. Srolovitz & Quanshui Zheng, 2015. "Measurement of the cleavage energy of graphite," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Zengyao Wang & Jiyi Chen & Erhong Song & Ning Wang & Juncai Dong & Xiang Zhang & Pulickel M. Ajayan & Wei Yao & Chenfeng Wang & Jianjun Liu & Jianfeng Shen & Mingxin Ye, 2021. "Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Dongguo Li & Eun Joo Park & Wenlei Zhu & Qiurong Shi & Yang Zhou & Hangyu Tian & Yuehe Lin & Alexey Serov & Barr Zulevi & Ehren Donel Baca & Cy Fujimoto & Hoon T. Chung & Yu Seung Kim, 2020. "Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers," Nature Energy, Nature, vol. 5(5), pages 378-385, May.
    5. Yuting Luo & Lei Tang & Usman Khan & Qiangmin Yu & Hui-Ming Cheng & Xiaolong Zou & Bilu Liu, 2019. "Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Aleksey Falin & Qiran Cai & Elton J.G. Santos & Declan Scullion & Dong Qian & Rui Zhang & Zhi Yang & Shaoming Huang & Kenji Watanabe & Takashi Taniguchi & Matthew R. Barnett & Ying Chen & Rodney S. Ru, 2017. "Mechanical properties of atomically thin boron nitride and the role of interlayer interactions," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    7. Qiangmin Yu & Zhiyuan Zhang & Siyao Qiu & Yuting Luo & Zhibo Liu & Fengning Yang & Heming Liu & Shiyu Ge & Xiaolong Zou & Baofu Ding & Wencai Ren & Hui-Ming Cheng & Chenghua Sun & Bilu Liu, 2021. "A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Tianou He & Weicong Wang & Fenglei Shi & Xiaolong Yang & Xiang Li & Jianbo Wu & Yadong Yin & Mingshang Jin, 2021. "Mastering the surface strain of platinum catalysts for efficient electrocatalysis," Nature, Nature, vol. 598(7879), pages 76-81, October.
    9. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Ali Han & Xiaofeng Zhou & Xijun Wang & Sheng Liu & Qihua Xiong & Qinghua Zhang & Lin Gu & Zechao Zhuang & Wenjing Zhang & Fanxing Li & Dingsheng Wang & Lain-Jong Li & Yadong Li, 2021. "One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Panlong Zhai & Yanxue Zhang & Yunzhen Wu & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Licheng Sun & Jungang Hou, 2020. "Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    12. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    14. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    15. Chi Zhang & Yuting Luo & Junyang Tan & Qiangmin Yu & Fengning Yang & Zhiyuan Zhang & Liusi Yang & Hui-Ming Cheng & Bilu Liu, 2020. "High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    16. Jitendra N. Tiwari & Ngoc Kim Dang & Siraj Sultan & Pandiarajan Thangavel & Hu Young Jeong & Kwang S. Kim, 2020. "Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting," Nature Sustainability, Nature, vol. 3(7), pages 556-563, July.
    17. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    19. David Wakerley & Sarah Lamaison & Joshua Wicks & Auston Clemens & Jeremy Feaster & Daniel Corral & Shaffiq A. Jaffer & Amitava Sarkar & Marc Fontecave & Eric B. Duoss & Sarah Baker & Edward H. Sargent, 2022. "Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers," Nature Energy, Nature, vol. 7(2), pages 130-143, February.
    20. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    21. Xing Chen & Xiao-Ting Wang & Jia-Bo Le & Shu-Min Li & Xue Wang & Yu-Jin Zhang & Petar Radjenovic & Yu Zhao & Yao-Hui Wang & Xiu-Mei Lin & Jin-Chao Dong & Jian-Feng Li, 2023. "Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Wu, Zexing & Chen, Zhi & Xu, Kunhan & Li, Bin & Li, Zhenjiang & Xu, Guangrui & Xiao, Weiping & Ma, Tianyi & Fu, Yunlei & Wang, Lei, 2023. "Cationic defects coupled with trace Pt under the assistance of corrosive engineering for efficient hydrogen electrocatalysis with large current density," Renewable Energy, Elsevier, vol. 210(C), pages 196-202.
    4. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Chenyu Li & Zhijie Wang & Mingda Liu & Enze Wang & Bolun Wang & Longlong Xu & Kaili Jiang & Shoushan Fan & Yinghui Sun & Jia Li & Kai Liu, 2022. "Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    16. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    17. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Qiangmin Yu & Zhiyuan Zhang & Siyao Qiu & Yuting Luo & Zhibo Liu & Fengning Yang & Heming Liu & Shiyu Ge & Xiaolong Zou & Baofu Ding & Wencai Ren & Hui-Ming Cheng & Chenghua Sun & Bilu Liu, 2021. "A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50117-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.