IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i2d10.1038_s41560-021-00973-9.html
   My bibliography  Save this article

Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers

Author

Listed:
  • David Wakerley

    (Stanford University
    Dioxycle SAS)

  • Sarah Lamaison

    (Stanford University
    Dioxycle SAS
    Collège de France, Sorbonne Université, PSL University, Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229)

  • Joshua Wicks

    (University of Toronto)

  • Auston Clemens

    (Lawrence Livermore National Laboratory)

  • Jeremy Feaster

    (Lawrence Livermore National Laboratory)

  • Daniel Corral

    (Stanford University
    Lawrence Livermore National Laboratory)

  • Shaffiq A. Jaffer

    (TotalEnergies American Services Inc.)

  • Amitava Sarkar

    (Stanford University
    Lawrence Livermore National Laboratory
    TotalEnergies EP Research & Technology USA, LLC)

  • Marc Fontecave

    (Collège de France, Sorbonne Université, PSL University, Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229)

  • Eric B. Duoss

    (Lawrence Livermore National Laboratory)

  • Sarah Baker

    (Lawrence Livermore National Laboratory)

  • Edward H. Sargent

    (University of Toronto)

  • Thomas F. Jaramillo

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Christopher Hahn

    (Lawrence Livermore National Laboratory
    SLAC National Accelerator Laboratory)

Abstract

CO2 emissions can be recycled via low-temperature CO2 electrolysis to generate products such as carbon monoxide, ethanol, ethylene, acetic acid, formic acid and propanol. In recent years, progress has been made towards an industrially relevant performance by leveraging the development of gas diffusion electrodes (GDEs), which enhance the mass transport of reactant gases (for example, CO2) to the active electrocatalyst. Innovations in GDE design have thus set new benchmarks for CO2 conversion activity. In this Review, we discuss GDE-based CO2 electrolysers, in terms of reactor designs, GDE composition and failure modes, to identify the key advances and remaining shortfalls of the technology. This is combined with an overview of the partial current densities, efficiencies and stabilities currently achieved and an outlook on how phenomena such as carbonate formation could influence the future direction of the field. Our aim is to capture insights that can accelerate the development of industrially relevant CO2 electrolysers.

Suggested Citation

  • David Wakerley & Sarah Lamaison & Joshua Wicks & Auston Clemens & Jeremy Feaster & Daniel Corral & Shaffiq A. Jaffer & Amitava Sarkar & Marc Fontecave & Eric B. Duoss & Sarah Baker & Edward H. Sargent, 2022. "Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers," Nature Energy, Nature, vol. 7(2), pages 130-143, February.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:2:d:10.1038_s41560-021-00973-9
    DOI: 10.1038/s41560-021-00973-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00973-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00973-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingbin Xie & Longlu Wang & Xia Liu & Jianmei Chen & Xixing Wen & Weiwei Zhao & Shujuan Liu & Qiang Zhao, 2024. "Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Hugo-Pieter Iglesias van Montfort & Mengran Li & Erdem Irtem & Maryam Abdinejad & Yuming Wu & Santosh K. Pal & Mark Sassenburg & Davide Ripepi & Siddhartha Subramanian & Jasper Biemolt & Thomas E. Ruf, 2023. "Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zesong Ma & Zhilong Yang & Wenchuan Lai & Qiyou Wang & Yan Qiao & Haolan Tao & Cheng Lian & Min Liu & Chao Ma & Anlian Pan & Hongwen Huang, 2022. "CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Gumaa A. El-Nagar & Flora Haun & Siddharth Gupta & Sasho Stojkovikj & Matthew T. Mayer, 2023. "Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    11. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:2:d:10.1038_s41560-021-00973-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.