IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i5d10.1038_s41560-020-0577-x.html
   My bibliography  Save this article

Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers

Author

Listed:
  • Dongguo Li

    (Los Alamos National Laboratory)

  • Eun Joo Park

    (Los Alamos National Laboratory)

  • Wenlei Zhu

    (Washington State University)

  • Qiurong Shi

    (Washington State University)

  • Yang Zhou

    (Washington State University)

  • Hangyu Tian

    (Washington State University)

  • Yuehe Lin

    (Washington State University)

  • Alexey Serov

    (Pajarito Powder LLC)

  • Barr Zulevi

    (Pajarito Powder LLC)

  • Ehren Donel Baca

    (Sandia National Laboratories)

  • Cy Fujimoto

    (Sandia National Laboratories)

  • Hoon T. Chung

    (Los Alamos National Laboratory)

  • Yu Seung Kim

    (Los Alamos National Laboratory)

Abstract

Alkaline anion exchange membrane (AEM) electrolysers to produce hydrogen from water are still at an early stage of development, and their performance is far lower than that of systems based on proton exchange membranes. Here, we report an ammonium-enriched anion exchange ionomer that improves the performance of an AEM electrolyser to levels approaching that of state-of-the-art proton exchange membrane electrolysers. Using rotating-disk electrode experiments, we show that a high pH (>13) in the electrode binder is the critical factor for improving the activity of the hydrogen- and oxygen-evolution reactions in AEM electrolysers. Based on this observation, we prepared and tested several quaternized polystyrene electrode binders in an AEM electrolyser. Using the binder with the highest ionic concentration and a NiFe oxygen evolution catalyst, we demonstrated performance of 2.7 A cm−2 at 1.8 V without a corrosive circulating alkaline solution. The limited durability of the AEM electrolyser remains a challenge to be addressed in the future.

Suggested Citation

  • Dongguo Li & Eun Joo Park & Wenlei Zhu & Qiurong Shi & Yang Zhou & Hangyu Tian & Yuehe Lin & Alexey Serov & Barr Zulevi & Ehren Donel Baca & Cy Fujimoto & Hoon T. Chung & Yu Seung Kim, 2020. "Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers," Nature Energy, Nature, vol. 5(5), pages 378-385, May.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:5:d:10.1038_s41560-020-0577-x
    DOI: 10.1038/s41560-020-0577-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0577-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0577-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingbin Xie & Longlu Wang & Xia Liu & Jianmei Chen & Xixing Wen & Weiwei Zhao & Shujuan Liu & Qiang Zhao, 2024. "Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Qinglu Liu & Tang Tang & Ziyu Tian & Shiwen Ding & Linqin Wang & Dexin Chen & Zhiwei Wang & Wentao Zheng & Husileng Lee & Xingyu Lu & Xiaohe Miao & Lin Liu & Licheng Sun, 2024. "A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Sicheng Li & Tong Liu & Wei Zhang & Mingzhen Wang & Huijuan Zhang & Chunlan Qin & Lingling Zhang & Yudan Chen & Shuaiwei Jiang & Dong Liu & Xiaokang Liu & Huijuan Wang & Qiquan Luo & Tao Ding & Tao Ya, 2024. "Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:5:d:10.1038_s41560-020-0577-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.