Offshore green hydrogen production from wind energy: Critical review and perspective
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2024.114320
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Al-Mufachi, Naser A. & Shah, Nilay, 2022. "The role of hydrogen and fuel cell technology in providing security for the UK energy system," Energy Policy, Elsevier, vol. 171(C).
- Dongguo Li & Eun Joo Park & Wenlei Zhu & Qiurong Shi & Yang Zhou & Hangyu Tian & Yuehe Lin & Alexey Serov & Barr Zulevi & Ehren Donel Baca & Cy Fujimoto & Hoon T. Chung & Yu Seung Kim, 2020. "Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers," Nature Energy, Nature, vol. 5(5), pages 378-385, May.
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
- McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
- Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
- Luo Yu & Qing Zhu & Shaowei Song & Brian McElhenny & Dezhi Wang & Chunzheng Wu & Zhaojun Qin & Jiming Bao & Ying Yu & Shuo Chen & Zhifeng Ren, 2019. "Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- Klaudia Ligęza & Mariusz Łaciak & Bartłomiej Ligęza, 2023. "Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland," Energies, MDPI, vol. 16(17), pages 1-24, August.
- Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
- McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
- Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
- Fu Sun & Jingshan Qin & Zhiyu Wang & Mengzhou Yu & Xianhong Wu & Xiaoming Sun & Jieshan Qiu, 2021. "Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Cranmer, Alexana & Broughel, Anna Ebers & Ericson, Jonathan & Goldberg, Mike & Dharni, Kira, 2023. "Getting to 30 GW by 2030: Visual preferences of coastal residents for offshore wind farms on the US East Coast," Energy Policy, Elsevier, vol. 173(C).
- Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
- Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
- Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Tao Liu & Zhiyu Zhao & Wenbin Tang & Yi Chen & Cheng Lan & Liangyu Zhu & Wenchuan Jiang & Yifan Wu & Yunpeng Wang & Zezhou Yang & Dongsheng Yang & Qijun Wang & Lunbo Luo & Taisheng Liu & Heping Xie, 2024. "In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
- Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
- Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
- Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
- Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
- Christoffer Hallgren & Johan Arnqvist & Stefan Ivanell & Heiner Körnich & Ville Vakkari & Erik Sahlée, 2020. "Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea," Energies, MDPI, vol. 13(14), pages 1-26, July.
- Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
- Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
- Bødal, Espen Flo & Holm, Sigmund Eggen & Subramanian, Avinash & Durakovic, Goran & Pinel, Dimitri & Hellemo, Lars & Ortiz, Miguel Muñoz & Knudsen, Brage Rugstad & Straus, Julian, 2024. "Hydrogen for harvesting the potential of offshore wind: A North Sea case study," Applied Energy, Elsevier, vol. 357(C).
- Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
- Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
More about this item
Keywords
Offshore wind energy; Green hydrogen production; Seawater electrolysis; Electrocatalysts; Membranes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:195:y:2024:i:c:s1364032124000431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.