IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36654-2.html
   My bibliography  Save this article

Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites

Author

Listed:
  • Xuan Trung Nguyen

    (Institut für Physik, Carl von Ossietzky Universität)

  • Katrin Winte

    (Institut für Physik, Carl von Ossietzky Universität)

  • Daniel Timmer

    (Institut für Physik, Carl von Ossietzky Universität)

  • Yevgeny Rakita

    (Weizmann Institute of Science
    Ben-Gurion University of the Negev)

  • Davide Raffaele Ceratti

    (Weizmann Institute of Science
    Institut Photovoltaïque d’Île de France (IPVF), CNRS, Ecole Polytechnique
    Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris)

  • Sigalit Aharon

    (Weizmann Institute of Science)

  • Muhammad Sufyan Ramzan

    (Institut für Physik, Carl von Ossietzky Universität)

  • Caterina Cocchi

    (Institut für Physik, Carl von Ossietzky Universität
    Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität)

  • Michael Lorke

    (Institut für Theoretische Physik, Universität Bremen)

  • Frank Jahnke

    (Institut für Theoretische Physik, Universität Bremen)

  • David Cahen

    (Weizmann Institute of Science)

  • Christoph Lienau

    (Institut für Physik, Carl von Ossietzky Universität
    Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität
    Research Center Neurosensory Science, Carl von Ossietzky Universität)

  • Antonietta De Sio

    (Institut für Physik, Carl von Ossietzky Universität
    Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität)

Abstract

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.

Suggested Citation

  • Xuan Trung Nguyen & Katrin Winte & Daniel Timmer & Yevgeny Rakita & Davide Raffaele Ceratti & Sigalit Aharon & Muhammad Sufyan Ramzan & Caterina Cocchi & Michael Lorke & Frank Jahnke & David Cahen & C, 2023. "Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36654-2
    DOI: 10.1038/s41467-023-36654-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36654-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36654-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Myeongkee Park & Amanda J. Neukirch & Sebastian E. Reyes-Lillo & Minliang Lai & Scott R. Ellis & Daniel Dietze & Jeffrey B. Neaton & Peidong Yang & Sergei Tretiak & Richard A. Mathies, 2018. "Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Adam D. Wright & Carla Verdi & Rebecca L. Milot & Giles E. Eperon & Miguel A. Pérez-Osorio & Henry J. Snaith & Feliciano Giustino & Michael B. Johnston & Laura M. Herz, 2016. "Electron–phonon coupling in hybrid lead halide perovskites," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Tushar Debnath & Debalaya Sarker & He Huang & Zhong-Kang Han & Amrita Dey & Lakshminarayana Polavarapu & Sergey V. Levchenko & Jochen Feldmann, 2021. "Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Christian Schneider & Mikhail M. Glazov & Tobias Korn & Sven Höfling & Bernhard Urbaszek, 2018. "Two-dimensional semiconductors in the regime of strong light-matter coupling," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Hangyong Shan & Ivan Iorsh & Bo Han & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Takashi Taniguchi & Sebastian Klembt & Sven Höfling & S, 2022. "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Ahmad R. Kirmani & Todd A. Byers & Zhenyi Ni & Kaitlyn VanSant & Darshpreet K. Saini & Rebecca Scheidt & Xiaopeng Zheng & Tatchen Buh Kum & Ian R. Sellers & Lyndsey McMillon-Brown & Jinsong Huang & Bi, 2024. "Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xingyu Yue & Chunwei Wang & Bo Zhang & Zeyu Zhang & Zhuang Xiong & Xinzhi Zu & Zhengzheng Liu & Zhiping Hu & George Omololu Odunmbaku & Yujie Zheng & Kuan Sun & Juan Du, 2023. "Real-time observation of the buildup of polaron in α-FAPbI3," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Kiyoung Jo & Emanuele Marino & Jason Lynch & Zhiqiao Jiang & Natalie Gogotsi & Thomas P. Darlington & Mohammad Soroush & P. James Schuck & Nicholas J. Borys & Christopher B. Murray & Deep Jariwala, 2023. "Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Feng Ke & Jiejuan Yan & Shanyuan Niu & Jiajia Wen & Ketao Yin & Hong Yang & Nathan R. Wolf & Yan-Kai Tzeng & Hemamala I. Karunadasa & Young S. Lee & Wendy L. Mao & Yu Lin, 2022. "Cesium-mediated electron redistribution and electron-electron interaction in high-pressure metallic CsPbI3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Sean A. Bourelle & Franco V. A. Camargo & Soumen Ghosh & Timo Neumann & Tim W. J. Goor & Ravichandran Shivanna & Thomas Winkler & Giulio Cerullo & Felix Deschler, 2022. "Optical control of exciton spin dynamics in layered metal halide perovskites via polaronic state formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36654-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.