IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37285-3.html
   My bibliography  Save this article

Single-shot ultrafast terahertz photography

Author

Listed:
  • Junliang Dong

    (Centre Énergie Matériaux Télécommunications)

  • Pei You

    (Centre Énergie Matériaux Télécommunications)

  • Alessandro Tomasino

    (Centre Énergie Matériaux Télécommunications)

  • Aycan Yurtsever

    (Centre Énergie Matériaux Télécommunications)

  • Roberto Morandotti

    (Centre Énergie Matériaux Télécommunications)

Abstract

Multidimensional imaging of transient events has proven pivotal in unveiling many fundamental mechanisms in physics, chemistry, and biology. In particular, real-time imaging modalities with ultrahigh temporal resolutions are required for capturing ultrashort events on picosecond timescales. Despite recent approaches witnessing a dramatic boost in high-speed photography, current single-shot ultrafast imaging schemes operate only at conventional optical wavelengths, being suitable solely within an optically-transparent framework. Here, leveraging on the unique penetration capability of terahertz radiation, we demonstrate a single-shot ultrafast terahertz photography system that can capture multiple frames of a complex ultrafast scene in non-transparent media with sub-picosecond temporal resolution. By multiplexing an optical probe beam in both the time and spatial-frequency domains, we encode the terahertz-captured three-dimensional dynamics into distinct spatial-frequency regions of a superimposed optical image, which is then computationally decoded and reconstructed. Our approach opens up the investigation of non-repeatable or destructive events that occur in optically-opaque scenarios.

Suggested Citation

  • Junliang Dong & Pei You & Alessandro Tomasino & Aycan Yurtsever & Roberto Morandotti, 2023. "Single-shot ultrafast terahertz photography," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37285-3
    DOI: 10.1038/s41467-023-37285-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37285-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37285-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Luo & X. Yang & X. Liu & Z. Liu & C. Vaswani & D. Cheng & M. Mootz & X. Zhao & Y. Yao & C.-Z. Wang & K.-M. Ho & I. E. Perakis & M. Dobrowolska & J. K. Furdyna & J. Wang, 2019. "Ultrafast manipulation of topologically enhanced surface transport driven by mid-infrared and terahertz pulses in Bi2Se3," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Rayko Ivanov Stantchev & Xiao Yu & Thierry Blu & Emma Pickwell-MacPherson, 2020. "Real-time terahertz imaging with a single-pixel detector," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Zhengyan Li & Rafal Zgadzaj & Xiaoming Wang & Yen-Yu Chang & Michael C. Downer, 2014. "Single-shot tomographic movies of evolving light-velocity objects," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
    4. Wentao Zhang & Pablo Maldonado & Zuanming Jin & Tom S. Seifert & Jacek Arabski & Guy Schmerber & Eric Beaurepaire & Mischa Bonn & Tobias Kampfrath & Peter M. Oppeneer & Dmitry Turchinovich, 2020. "Ultrafast terahertz magnetometry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Liang Gao & Jinyang Liang & Chiye Li & Lihong V. Wang, 2014. "Single-shot compressed ultrafast photography at one hundred billion frames per second," Nature, Nature, vol. 516(7529), pages 74-77, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhoutian Liu & Lele Wang & Yuan Meng & Tiantian He & Sifeng He & Yousi Yang & Liuyue Wang & Jiading Tian & Dan Li & Ping Yan & Mali Gong & Qiang Liu & Qirong Xiao, 2022. "All-fiber high-speed image detection enabled by deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yuankai Guo & Wei Lin & Wenlong Wang & Runsen Zhang & Tao Liu & Yiqing Xu & Xiaoming Wei & Zhongmin Yang, 2023. "Unveiling the complexity of spatiotemporal soliton molecules in real time," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Patrick Kilcullen & Tsuneyuki Ozaki & Jinyang Liang, 2022. "Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. E. Rongione & O. Gueckstock & M. Mattern & O. Gomonay & H. Meer & C. Schmitt & R. Ramos & T. Kikkawa & M. Mičica & E. Saitoh & J. Sinova & H. Jaffrès & J. Mangeney & S. T. B. Goennenwein & S. Geprägs , 2023. "Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin–phonon interactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Narcís Vilar & Roger Artigas & Martí Duocastella & Guillem Carles, 2024. "Fast topographic optical imaging using encoded search focal scan," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Kun Peng & Nicholas Paul Morgan & Ford M. Wagner & Thomas Siday & Chelsea Qiushi Xia & Didem Dede & Victor Boureau & Valerio Piazza & Anna Fontcuberta i Morral & Michael B. Johnston, 2024. "Direct and integrating sampling in terahertz receivers from wafer-scalable InAs nanowires," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yinqi Wang & Kun Huang & Jianan Fang & Ming Yan & E Wu & Heping Zeng, 2023. "Mid-infrared single-pixel imaging at the single-photon level," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Bing Cheng & Di Cheng & Tao Jiang & Wei Xia & Boqun Song & Martin Mootz & Liang Luo & Ilias E. Perakis & Yongxin Yao & Yanfeng Guo & Jigang Wang, 2024. "Chirality manipulation of ultrafast phase switches in a correlated CDW-Weyl semimetal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yide Zhang & Binglin Shen & Tong Wu & Jerry Zhao & Joseph C. Jing & Peng Wang & Kanomi Sasaki-Capela & William G. Dunphy & David Garrett & Konstantin Maslov & Weiwei Wang & Lihong V. Wang, 2022. "Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Jingdan Liu & Miguel Marquez & Yingming Lai & Heide Ibrahim & Katherine Légaré & Philippe Lassonde & Xianglei Liu & Michel Hehn & Stéphane Mangin & Grégory Malinowski & Zhengyan Li & François Légaré &, 2024. "Swept coded aperture real-time femtophotography," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37285-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.