IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49578-2.html
   My bibliography  Save this article

Superporous sponge prepared by secondary network compaction with enhanced permeability and mechanical properties for non-compressible hemostasis in pigs

Author

Listed:
  • Tianshen Jiang

    (South China University of Technology
    South China University of Technology)

  • Sirong Chen

    (South China University of Technology
    South China University of Technology)

  • Jingwen Xu

    (South China University of Technology
    South China University of Technology)

  • Yuxiao Zhang

    (South China University of Technology
    South China University of Technology)

  • Hao Fu

    (South China University of Technology
    South China University of Technology)

  • Qiangjun Ling

    (South China University of Technology
    South China University of Technology)

  • Yan Xu

    (The Seventh Affiliated Hospital of Sun Yat-sen University)

  • Xiangyu Chu

    (Huazhong University of Science and Technology)

  • Ruinan Wang

    (South China University of Technology
    South China University of Technology)

  • Liangcong Hu

    (Huazhong University of Science and Technology)

  • Hao Li

    (First Affiliated Hospital of Sun Yat-sen University)

  • Weitong Huang

    (South China University of Technology
    South China University of Technology)

  • Liming Bian

    (South China University of Technology
    South China University of Technology
    South China University of Technology
    South China University of Technology)

  • Pengchao Zhao

    (South China University of Technology
    South China University of Technology
    South China University of Technology
    South China University of Technology)

  • Fuxin Wei

    (The Seventh Affiliated Hospital of Sun Yat-sen University
    Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research)

Abstract

Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.

Suggested Citation

  • Tianshen Jiang & Sirong Chen & Jingwen Xu & Yuxiao Zhang & Hao Fu & Qiangjun Ling & Yan Xu & Xiangyu Chu & Ruinan Wang & Liangcong Hu & Hao Li & Weitong Huang & Liming Bian & Pengchao Zhao & Fuxin Wei, 2024. "Superporous sponge prepared by secondary network compaction with enhanced permeability and mechanical properties for non-compressible hemostasis in pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49578-2
    DOI: 10.1038/s41467-024-49578-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49578-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49578-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhao & Baolin Guo & Hao Wu & Yongping Liang & Peter X. Ma, 2018. "Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    2. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    3. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xinchen Du & Le Wu & Hongyu Yan & Zhuyan Jiang & Shilin Li & Wen Li & Yanli Bai & Hongjun Wang & Zhaojun Cheng & Deling Kong & Lianyong Wang & Meifeng Zhu, 2021. "Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Bin Chen & Yudong Cao & Qiaoyu Li & Zhuo Yan & Rui Liu & Yunjiao Zhao & Xiang Zhang & Minying Wu & Yixiu Qin & Chang Sun & Wei Yao & Ziyi Cao & Pulickel M. Ajayan & Mason Oliver Lam Chee & Pei Dong & , 2022. "Liquid metal-tailored gluten network for protein-based e-skin," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Dan Xu & Yang Yang & Lukas Emmerich & Yong Wang & Kai Zhang, 2023. "Divergent Deborah number-dependent transition from homogeneity to heterogeneity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Siheng Wang & Le Yu & Shanshan Wang & Lei Zhang & Lu Chen & Xu Xu & Zhanqian Song & He Liu & Chaoji Chen, 2022. "Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Limei Huang & Hao Li & Shunxi Wen & Penghui Xia & Fanzhan Zeng & Chaoyi Peng & Jun Yang & Yun Tan & Ji Liu & Lei Jiang & Jianfeng Wang, 2024. "Control nucleation for strong and tough crystalline hydrogels with high water content," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Rui Ye & Ziyu Zhu & Tianyi Gu & Dengjie Cao & Kai Jiang & Qiang Dai & Kuoran Xing & Yifan Jiang & Siyi Zhou & Ping Cai & David Tai Leong & Mengfei Yu & Jie Song, 2024. "Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. S. M. Shatil Shahriar & Alec D. McCarthy & Syed Muntazir Andrabi & Yajuan Su & Navatha Shree Polavoram & Johnson V. John & Mitchell P. Matis & Wuqiang Zhu & Jingwei Xie, 2024. "Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Yan Cui & Zongwang Huang & Li Lei & Qinglin Li & Jinlong Jiang & Qinghai Zeng & Aidong Tang & Huaming Yang & Yi Zhang, 2021. "Robust hemostatic bandages based on nanoclay electrospun membranes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Jirong Yang & Zhigang Chen & Chongjian Gao & Juan Liu & Kaizheng Liu & Xiao Wang & Xiaoling Pan & Guocheng Wang & Hongxun Sang & Haobo Pan & Wenguang Liu & Changshun Ruan, 2024. "A mechanical-assisted post-bioprinting strategy for challenging bone defects repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Sarah J. Wu & Jingjing Wu & Samuel J. Kaser & Heejung Roh & Ruth D. Shiferaw & Hyunwoo Yuk & Xuanhe Zhao, 2024. "A 3D printable tissue adhesive," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Donghwan Ji & Joseph Liu & Jiayu Zhao & Minghao Li & Yumi Rho & Hwansoo Shin & Tae Hee Han & Jinhye Bae, 2024. "Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yong Hu & Jennifer L. Gottfried & Rose Pesce-Rodriguez & Chi-Chin Wu & Scott D. Walck & Zhiyu Liu & Sangeeth Balakrishnan & Scott Broderick & Zipeng Guo & Qiang Zhang & Lu An & Revant Adlakha & Mostaf, 2022. "Releasing chemical energy in spatially programmed ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49578-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.