IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7847d10.1038_s41586-021-03212-z.html
   My bibliography  Save this article

Strong tough hydrogels via the synergy of freeze-casting and salting out

Author

Listed:
  • Mutian Hua

    (University of California, Los Angeles)

  • Shuwang Wu

    (University of California, Los Angeles
    Shanghai Jiao Tong University)

  • Yanfei Ma

    (University of California, Los Angeles)

  • Yusen Zhao

    (University of California, Los Angeles)

  • Zilin Chen

    (University of California, Los Angeles)

  • Imri Frenkel

    (University of California, Los Angeles)

  • Joseph Strzalka

    (Argonne National Laboratory)

  • Hua Zhou

    (Argonne National Laboratory)

  • Xinyuan Zhu

    (Shanghai Jiao Tong University)

  • Ximin He

    (University of California, Los Angeles)

Abstract

Natural load-bearing materials such as tendons have a high water content of about 70 per cent but are still strong and tough, even when used for over one million cycles per year, owing to the hierarchical assembly of anisotropic structures across multiple length scales1. Synthetic hydrogels have been created using methods such as electro-spinning2, extrusion3, compositing4,5, freeze-casting6,7, self-assembly8 and mechanical stretching9,10 for improved mechanical performance. However, in contrast to tendons, many hydrogels with the same high water content do not show high strength, toughness or fatigue resistance. Here we present a strategy to produce a multi-length-scale hierarchical hydrogel architecture using a freezing-assisted salting-out treatment. The produced poly(vinyl alcohol) hydrogels are highly anisotropic, comprising micrometre-scale honeycomb-like pore walls, which in turn comprise interconnected nanofibril meshes. These hydrogels have a water content of 70–95 per cent and properties that compare favourably to those of other tough hydrogels and even natural tendons; for example, an ultimate stress of 23.5 ± 2.7 megapascals, strain levels of 2,900 ± 450 per cent, toughness of 210 ± 13 megajoules per cubic metre, fracture energy of 170 ± 8 kilojoules per square metre and a fatigue threshold of 10.5 ± 1.3 kilojoules per square metre. The presented strategy is generalizable to other polymers, and could expand the applicability of structural hydrogels to conditions involving more demanding mechanical loading.

Suggested Citation

  • Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7847:d:10.1038_s41586-021-03212-z
    DOI: 10.1038/s41586-021-03212-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03212-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03212-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Donghwan Ji & Joseph Liu & Jiayu Zhao & Minghao Li & Yumi Rho & Hwansoo Shin & Tae Hee Han & Jinhye Bae, 2024. "Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Tianshen Jiang & Sirong Chen & Jingwen Xu & Yuxiao Zhang & Hao Fu & Qiangjun Ling & Yan Xu & Xiangyu Chu & Ruinan Wang & Liangcong Hu & Hao Li & Weitong Huang & Liming Bian & Pengchao Zhao & Fuxin Wei, 2024. "Superporous sponge prepared by secondary network compaction with enhanced permeability and mechanical properties for non-compressible hemostasis in pigs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Shaoji Wu & Zhao Liu & Caihong Gong & Wanjiang Li & Sijia Xu & Rui Wen & Wen Feng & Zhiming Qiu & Yurong Yan, 2024. "Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Dan Xu & Yang Yang & Lukas Emmerich & Yong Wang & Kai Zhang, 2023. "Divergent Deborah number-dependent transition from homogeneity to heterogeneity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yong Hu & Jennifer L. Gottfried & Rose Pesce-Rodriguez & Chi-Chin Wu & Scott D. Walck & Zhiyu Liu & Sangeeth Balakrishnan & Scott Broderick & Zipeng Guo & Qiang Zhang & Lu An & Revant Adlakha & Mostaf, 2022. "Releasing chemical energy in spatially programmed ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jiqiang Wang & Baohu Wu & Peng Wei & Shengtong Sun & Peiyi Wu, 2022. "Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Siheng Wang & Le Yu & Shanshan Wang & Lei Zhang & Lu Chen & Xu Xu & Zhanqian Song & He Liu & Chaoji Chen, 2022. "Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Jingjun Wu & Jing Guo & Changhong Linghu & Yahui Lu & Jizhou Song & Tao Xie & Qian Zhao, 2021. "Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Shuihong Zhu & Sen Wang & Yifan Huang & Qiyun Tang & Tianqi Fu & Riyan Su & Chaoyu Fan & Shuang Xia & Pooi See Lee & Youhui Lin, 2024. "Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Jirong Yang & Zhigang Chen & Chongjian Gao & Juan Liu & Kaizheng Liu & Xiao Wang & Xiaoling Pan & Guocheng Wang & Hongxun Sang & Haobo Pan & Wenguang Liu & Changshun Ruan, 2024. "A mechanical-assisted post-bioprinting strategy for challenging bone defects repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Shuzhen Yan & Kaiming Hu & Shuai Chen & Tiantian Li & Wenming Zhang & Jie Yin & Xuesong Jiang, 2022. "Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7847:d:10.1038_s41586-021-03212-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.