IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51002-8.html
   My bibliography  Save this article

Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%

Author

Listed:
  • Jinpei Wang

    (City University of Hong Kong)

  • Yuxin Song

    (The Hong Kong Polytechnic University)

  • Fanfei Yu

    (The Hong Kong Polytechnic University)

  • Yijun Zeng

    (City University of Hong Kong)

  • Chenyang Wu

    (City University of Hong Kong)

  • Xuezhi Qin

    (City University of Hong Kong)

  • Liang Peng

    (City University of Hong Kong)

  • Yitan Li

    (City University of Hong Kong)

  • Yongsen Zhou

    (City University of Hong Kong)

  • Ran Tao

    (The Hong Kong Polytechnic University)

  • Hangchen Liu

    (The Hong Kong Polytechnic University)

  • Hong Zhu

    (The Hong Kong Polytechnic University)

  • Ming Sun

    (The Hong Kong Polytechnic University)

  • Wanghuai Xu

    (The Hong Kong Polytechnic University)

  • Chao Zhang

    (Zhejiang University)

  • Zuankai Wang

    (The Hong Kong Polytechnic University
    Shenzhen Research Institute of The Hong Kong Polytechnic University)

Abstract

Body heat, a clean and ubiquitous energy source, is promising as a renewable resource to supply wearable electronics. Emerging tough thermogalvanic device could be a sustainable platform to convert body heat energy into electricity for powering wearable electronics if its Carnot-relative efficiency (ηr) reaches ~5%. However, maximizing both the ηr and mechanical strength of the device are mutually exclusive. Here, we develop a rational strategy to construct a flexible thermogalvanic armor (FTGA) with a ηr over 8% near room temperature, yet preserving mechanical robustness. The key to our design lies in simultaneously realizing the thermosensitive-crystallization and salting-out effect in the elaborately designed ion-transport highway to boost ηr and improve mechanical strength. The FTGA achieves an ultrahigh ηr of 8.53%, coupling with impressive mechanical toughness of 70.65 MJ m−3 and substantial elongation (~900%) together. Our strategy holds sustainable potential for harvesting body heat and powering wearable electronics without recharging.

Suggested Citation

  • Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51002-8
    DOI: 10.1038/s41467-024-51002-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51002-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51002-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuaihua Wang & Yuchen Li & Mao Yu & Qikai Li & Huan Li & Yupeng Wang & Jiajia Zhang & Kang Zhu & Weishu Liu, 2024. "High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhiwei Li & Yinghong Xu & Langyuan Wu & Jiaxin Cui & Hui Dou & Xiaogang Zhang, 2023. "Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jiangjiang Duan & Guang Feng & Boyang Yu & Jia Li & Ming Chen & Peihua Yang & Jiamao Feng & Kang Liu & Jun Zhou, 2018. "Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    5. Li Yin & Fan Yang & Xin Bao & Wenhua Xue & Zhipeng Du & Xinyu Wang & Jinxuan Cheng & Hongjun Ji & Jiehe Sui & Xingjun Liu & Yumei Wang & Feng Cao & Jun Mao & Mingyu Li & Zhifeng Ren & Qian Zhang, 2023. "Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design," Nature Energy, Nature, vol. 8(7), pages 665-674, July.
    6. Xun Wang & Yu-Ting Huang & Chang Liu & Kaiyu Mu & Ka Ho Li & Sijia Wang & Yuan Yang & Lei Wang & Chia-Hung Su & Shien-Ping Feng, 2019. "Direct thermal charging cell for converting low-grade heat to electricity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Pierre Lheritier & Alvar Torelló & Tomoyasu Usui & Youri Nouchokgwe & Ashwath Aravindhan & Junning Li & Uros Prah & Veronika Kovacova & Olivier Bouton & Sakyo Hirose & Emmanuel Defay, 2022. "Large harvested energy with non-linear pyroelectric modules," Nature, Nature, vol. 609(7928), pages 718-721, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    3. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    4. Chenyue Guo & Huajie Tang & Pengfei Wang & Qihao Xu & Haodan Pan & Xinyu Zhao & Fan Fan & Tingxian Li & Dongliang Zhao, 2024. "Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yi Zhou & Tianpeng Ding & Jun Guo & Guoqiang Xu & Mingqiang Cheng & Chen Zhang & Xiao-Qiao Wang & Wanheng Lu & Wei Li Ong & Jiangyu Li & Jiaqing He & Cheng-Wei Qiu & Ghim Wei Ho, 2023. "Giant polarization ripple in transverse pyroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zhiwei Li & Yinghong Xu & Langyuan Wu & Jiaxin Cui & Hui Dou & Xiaogang Zhang, 2023. "Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Airan Li & Yuechu Wang & Yuzheng Li & Xinlei Yang & Pengfei Nan & Kai Liu & Binghui Ge & Chenguang Fu & Tiejun Zhu, 2024. "High performance magnesium-based plastic semiconductors for flexible thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Dan Xu & Yang Yang & Lukas Emmerich & Yong Wang & Kai Zhang, 2023. "Divergent Deborah number-dependent transition from homogeneity to heterogeneity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Li Yin & Xiaofang Li & Xin Bao & Jinxuan Cheng & Chen Chen & Zongwei Zhang & Xingjun Liu & Feng Cao & Jun Mao & Qian Zhang, 2024. "CALPHAD accelerated design of advanced full-Zintl thermoelectric device," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).
    17. Burmistrov, Igor & Gorshkov, Nikolay & Kovyneva, Natalya & Kolesnikov, Evgeny & Khaidarov, Bekzod & Karunakaran, Gopalu & Cho, Eun-Bum & Kiselev, Nikolay & Artyukhov, Denis & Kuznetsov, Denis & Gorokh, 2020. "High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes," Renewable Energy, Elsevier, vol. 157(C), pages 1-8.
    18. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    19. Siheng Wang & Le Yu & Shanshan Wang & Lei Zhang & Lu Chen & Xu Xu & Zhanqian Song & He Liu & Chaoji Chen, 2022. "Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51002-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.