IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47597-7.html
   My bibliography  Save this article

3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles

Author

Listed:
  • Quyang Liu

    (National University of Singapore)

  • Xinyu Dong

    (National University of Singapore)

  • Haobo Qi

    (National University of Singapore)

  • Haoqi Zhang

    (National University of Singapore)

  • Tian Li

    (National University of Singapore)

  • Yijing Zhao

    (National University of Singapore)

  • Guanjin Li

    (National University of Singapore)

  • Wei Zhai

    (National University of Singapore)

Abstract

Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.

Suggested Citation

  • Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47597-7
    DOI: 10.1038/s41467-024-47597-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47597-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47597-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvan Gantenbein & Kunal Masania & Wilhelm Woigk & Jens P. W. Sesseg & Theo A. Tervoort & André R. Studart, 2018. "Three-dimensional printing of hierarchical liquid-crystal-polymer structures," Nature, Nature, vol. 561(7722), pages 226-230, September.
    2. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    4. Qing-Fang Guan & Huai-Bin Yang & Zi-Meng Han & Zhang-Chi Ling & Shu-Hong Yu, 2020. "An all-natural bioinspired structural material for plastic replacement," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. Hortense Le Ferrand & Sreenath Bolisetty & Ahmet F. Demirörs & Rafael Libanori & André R. Studart & Raffaele Mezzenga, 2016. "Magnetic assembly of transparent and conducting graphene-based functional composites," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Wei Wang & Shu Jian Chen & Weiqiang Chen & Wenhui Duan & Jia Zie Lai & Kwesi Sagoe-Crentsil, 2022. "Damage-tolerant material design motif derived from asymmetrical rotation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yong Hu & Jennifer L. Gottfried & Rose Pesce-Rodriguez & Chi-Chin Wu & Scott D. Walck & Zhiyu Liu & Sangeeth Balakrishnan & Scott Broderick & Zipeng Guo & Qiang Zhang & Lu An & Revant Adlakha & Mostaf, 2022. "Releasing chemical energy in spatially programmed ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Shuihong Zhu & Sen Wang & Yifan Huang & Qiyun Tang & Tianqi Fu & Riyan Su & Chaoyu Fan & Shuang Xia & Pooi See Lee & Youhui Lin, 2024. "Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Jingjun Wu & Jing Guo & Changhong Linghu & Yahui Lu & Jizhou Song & Tao Xie & Qian Zhao, 2021. "Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Shuzhen Yan & Kaiming Hu & Shuai Chen & Tiantian Li & Wenming Zhang & Jie Yin & Xuesong Jiang, 2022. "Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Dan Xu & Yang Yang & Lukas Emmerich & Yong Wang & Kai Zhang, 2023. "Divergent Deborah number-dependent transition from homogeneity to heterogeneity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Siheng Wang & Le Yu & Shanshan Wang & Lei Zhang & Lu Chen & Xu Xu & Zhanqian Song & He Liu & Chaoji Chen, 2022. "Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Xiaolu Sun & Shaoyun Chen & Bo Qu & Rui Wang & Yanyu Zheng & Xiaoying Liu & Wenjie Li & Jianhong Gao & Qinhui Chen & Dongxian Zhuo, 2023. "Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jirong Yang & Zhigang Chen & Chongjian Gao & Juan Liu & Kaizheng Liu & Xiao Wang & Xiaoling Pan & Guocheng Wang & Hongxun Sang & Haobo Pan & Wenguang Liu & Changshun Ruan, 2024. "A mechanical-assisted post-bioprinting strategy for challenging bone defects repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Donghwan Ji & Joseph Liu & Jiayu Zhao & Minghao Li & Yumi Rho & Hwansoo Shin & Tae Hee Han & Jinhye Bae, 2024. "Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47597-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.