IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7851d10.1038_s41586-021-03268-x.html
   My bibliography  Save this article

Control and readout of a superconducting qubit using a photonic link

Author

Listed:
  • F. Lecocq

    (National Institute of Standards and Technology
    University of Colorado)

  • F. Quinlan

    (National Institute of Standards and Technology)

  • K. Cicak

    (National Institute of Standards and Technology)

  • J. Aumentado

    (National Institute of Standards and Technology)

  • S. A. Diddams

    (National Institute of Standards and Technology
    University of Colorado)

  • J. D. Teufel

    (National Institute of Standards and Technology)

Abstract

Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits)1–3. In superconducting quantum processors4, each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits5. Here we introduce a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector6, capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing7. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.

Suggested Citation

  • F. Lecocq & F. Quinlan & K. Cicak & J. Aumentado & S. A. Diddams & J. D. Teufel, 2021. "Control and readout of a superconducting qubit using a photonic link," Nature, Nature, vol. 591(7851), pages 575-579, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03268-x
    DOI: 10.1038/s41586-021-03268-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03268-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03268-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Ya. S. Greenberg & A. A. Shtygashev & A. G. Moiseev, 2023. "Time-dependent theory of single-photon scattering from a two-qubit system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7851:d:10.1038_s41586-021-03268-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.