IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38193-2.html
   My bibliography  Save this article

HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing

Author

Listed:
  • Chao Yang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Zhenzhen Ma

    (Nankai University)

  • Keshan Wang

    (Huazhong University of Science and Technology)

  • Xingxiao Dong

    (Dalian Polytechnic University)

  • Meiyu Huang

    (Guangxi Normal University)

  • Yaqiu Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiagu Zhu

    (Tianjin University of Science and Technology)

  • Ju Li

    (Tianjin Normal University)

  • Zhihui Cheng

    (Nankai University)

  • Changhao Bi

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xueli Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

C-to-G base editors have been successfully constructed recently, but limited work has been done on concurrent C-to-G and A-to-G base editing. In addition, there is also limited data on how chromatin-associated factors affect the base editing. Here, we test a series of chromatin-associated factors, and chromosomal protein HMGN1 was found to enhance the efficiency of both C-to-G and A-to-G base editing. By fusing HMGN1, GBE and ABE to Cas9, we develop a CRISPR-based dual-function A-to-G and C-to-G base editor (GGBE) which is capable of converting simultaneous A and C to G conversion with substantial editing efficiency. Accordingly, the HMGN1 role shown in this work and the resulting GGBE tool further broaden the genome manipulation capacity of CRISPR-directed base editors.

Suggested Citation

  • Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38193-2
    DOI: 10.1038/s41467-023-38193-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38193-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38193-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luke W. Koblan & Michael R. Erdos & Christopher Wilson & Wayne A. Cabral & Jonathan M. Levy & Zheng-Mei Xiong & Urraca L. Tavarez & Lindsay M. Davison & Yantenew G. Gete & Xiaojing Mao & Gregory A. Ne, 2021. "In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice," Nature, Nature, vol. 589(7843), pages 608-614, January.
    2. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    3. Liwei Chen & Jung Eun Park & Peter Paa & Priscilla D. Rajakumar & Hong-Ting Prekop & Yi Ting Chew & Swathi N. Manivannan & Wei Leong Chew, 2021. "Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Qingbo Wang & Emma Pierce-Hoffman & Beryl B. Cummings & Jessica Alföldi & Laurent C. Francioli & Laura D. Gauthier & Andrew J. Hill & Anne H. O’Donnell-Luria & Konrad J. Karczewski & Daniel G. MacArth, 2020. "Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    5. John J. Krais & Yifan Wang & Pooja Patel & Jayati Basu & Andrea J. Bernhardy & Neil Johnson, 2021. "RNF168-mediated localization of BARD1 recruits the BRCA1-PALB2 complex to DNA damage," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Jordan R. Becker & Gillian Clifford & Clara Bonnet & Anja Groth & Marcus D. Wilson & J. Ross Chapman, 2021. "BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination," Nature, Nature, vol. 596(7872), pages 433-437, August.
    7. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    8. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    9. Nicole M. Gaudelli & Alexis C. Komor & Holly A. Rees & Michael S. Packer & Ahmed H. Badran & David I. Bryson & David R. Liu, 2017. "Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage," Nature, Nature, vol. 551(7681), pages 464-471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Zeyu Lu & Lingtian Zhang & Qing Mu & Junyang Liu & Yu Chen & Haoyuan Wang & Yanjun Zhang & Rui Su & Ruijun Wang & Zhiying Wang & Qi Lv & Zhihong Liu & Jiasen Liu & Yunhua Li & Yanhong Zhao, 2024. "Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    5. Jaesuk Lee & Kayeong Lim & Annie Kim & Young Geun Mok & Eugene Chung & Sung-Ik Cho & Ji Min Lee & Jin-Soo Kim, 2023. "Prime editing with genuine Cas9 nickases minimizes unwanted indels," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Luke Hoberecht & Pirunthan Perampalam & Aaron Lun & Jean-Philippe Fortin, 2022. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Jiajia Lin & Ming Jin & Dong Yang & Zhifang Li & Yu Zhang & Qingquan Xiao & Yin Wang & Yuyang Yu & Xiumei Zhang & Zhurui Shao & Linyu Shi & Shu Zhang & Wan-jin Chen & Ning Wang & Shiwen Wu & Hui Yang , 2024. "Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Kun Jia & Yan-ru Cui & Shisheng Huang & Peihong Yu & Zhengxing Lian & Peixiang Ma & Jia Liu, 2022. "Phage peptides mediate precision base editing with focused targeting window," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. You-Jeong Kim & Dayoung Yun & Jungjoon K. Lee & Cheulhee Jung & Aram J. Chung, 2024. "Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38193-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.