IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52485-1.html
   My bibliography  Save this article

Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation

Author

Listed:
  • Guoling Li

    (Ltd.)

  • Xue Dong

    (Ltd.)

  • Jiamin Luo

    (Ltd.)

  • Tanglong Yuan

    (Chinese Academy of Agricultural Sciences)

  • Tong Li

    (Ltd.)

  • Guoli Zhao

    (Chinese Academy of Medical Sciences
    Shanghai Research Center of Ophthalmology and Optometry)

  • Hainan Zhang

    (Ltd.)

  • Jingxing Zhou

    (Ltd.)

  • Zhenhai Zeng

    (Chinese Academy of Medical Sciences
    Shanghai Research Center of Ophthalmology and Optometry)

  • Shuna Cui

    (Ltd.)

  • Haoqiang Wang

    (Ltd.)

  • Yin Wang

    (Ltd.)

  • Yuyang Yu

    (Ltd.)

  • Yuan Yuan

    (Ltd.)

  • Erwei Zuo

    (Chinese Academy of Agricultural Sciences)

  • Chunlong Xu

    (Lingang Laboratory)

  • Jinhai Huang

    (Chinese Academy of Medical Sciences
    Shanghai Research Center of Ophthalmology and Optometry)

  • Yingsi Zhou

    (Ltd.)

Abstract

The engineered TadA variants used in cytosine base editors (CBEs) present distinctive advantages, including a smaller size and fewer off-target effects compared to cytosine base editors that rely on natural deaminases. However, the current TadA variants demonstrate a preference for base editing in DNA with specific motif sequences and possess dual deaminase activity, acting on both cytosine and adenosine in adjacent positions, limiting their application scope. To address these issues, we employ TadA orthologs screening and multi sequence alignment (MSA)-guided protein engineering techniques to create a highly effective cytosine base editor (aTdCBE) without motif and adenosine deaminase activity limitations. Notably, the delivery of aTdCBE to a humanized mouse model of Duchenne muscular dystrophy (DMD) mice achieves robust exon 55 skipping and restoration of dystrophin expression. Our advancement in engineering TadA ortholog for cytosine editing enriches the base editing toolkits for gene-editing therapy and other potential applications.

Suggested Citation

  • Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52485-1
    DOI: 10.1038/s41467-024-52485-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52485-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52485-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shuqian Zhang & Bo Yuan & Jixin Cao & Liting Song & Jinlong Chen & Jiayi Qiu & Zilong Qiu & Xing-Ming Zhao & Jingqi Chen & Tian-Lin Cheng, 2023. "TadA orthologs enable both cytosine and adenine editing of base editors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jonathan Frazer & Pascal Notin & Mafalda Dias & Aidan Gomez & Joseph K. Min & Kelly Brock & Yarin Gal & Debora S. Marks, 2021. "Disease variant prediction with deep generative models of evolutionary data," Nature, Nature, vol. 599(7883), pages 91-95, November.
    5. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Makoto Saito & Peiyu Xu & Guilhem Faure & Samantha Maguire & Soumya Kannan & Han Altae-Tran & Sam Vo & AnAn Desimone & Rhiannon K. Macrae & Feng Zhang, 2023. "Fanzor is a eukaryotic programmable RNA-guided endonuclease," Nature, Nature, vol. 620(7974), pages 660-668, August.
    7. Yajing Liu & Changyang Zhou & Shisheng Huang & Lu Dang & Yu Wei & Jun He & Yingsi Zhou & Shaoshuai Mao & Wanyu Tao & Yu Zhang & Hui Yang & Xingxu Huang & Tian Chi, 2020. "A Cas-embedding strategy for minimizing off-target effects of DNA base editors," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    9. Changyang Zhou & Yidi Sun & Rui Yan & Yajing Liu & Erwei Zuo & Chan Gu & Linxiao Han & Yu Wei & Xinde Hu & Rong Zeng & Yixue Li & Haibo Zhou & Fan Guo & Hui Yang, 2019. "Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis," Nature, Nature, vol. 571(7764), pages 275-278, July.
    10. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    11. Colin McGaw & Anthony J. Garrity & Gabrielle Z. Munoz & Jeffrey R. Haswell & Sejuti Sengupta & Elise Keston-Smith & Pratyusha Hunnewell & Alexa Ornstein & Mishti Bose & Quinton Wessells & Noah Jakimo , 2022. "Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Daniel J. Diaz & Chengyue Gong & Jeffrey Ouyang-Zhang & James M. Loy & Jordan Wells & David Yang & Andrew D. Ellington & Alexandros G. Dimakis & Adam R. Klivans, 2024. "Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Kian Hong Kock & Patrick K. Kimes & Stephen S. Gisselbrecht & Sachi Inukai & Sabrina K. Phanor & James T. Anderson & Gayatri Ramakrishnan & Colin H. Lipper & Dongyuan Song & Jesse V. Kurland & Julia M, 2024. "DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Yinglu Cui & Yanchun Chen & Jinyuan Sun & Tong Zhu & Hua Pang & Chunli Li & Wen-Chao Geng & Bian Wu, 2024. "Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jing Guo & Luyao Gong & Haiying Yu & Ming Li & Qiaohui An & Zhenquan Liu & Shuru Fan & Changjialian Yang & Dahe Zhao & Jing Han & Hua Xiang, 2024. "Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Mofan Feng & Xiaoxi Wei & Xi Zheng & Liangjie Liu & Lin Lin & Manying Xia & Guang He & Yi Shi & Qing Lu, 2024. "Decoding Missense Variants by Incorporating Phase Separation via Machine Learning," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    10. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Cheyenne Ziegler & Jonathan Martin & Claude Sinner & Faruck Morcos, 2023. "Latent generative landscapes as maps of functional diversity in protein sequence space," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Haifeng Sun & Zhaojun Wang & Limini Shen & Yeling Feng & Lu Han & Xuezhen Qian & Runde Meng & Kangming Ji & Dong Liang & Fei Zhou & Xin Lou & Jun Zhang & Bin Shen, 2023. "Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    17. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52485-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.