IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36003-3.html
   My bibliography  Save this article

TadA orthologs enable both cytosine and adenine editing of base editors

Author

Listed:
  • Shuqian Zhang

    (Fudan University
    Qilu Hospital of Shandong University)

  • Bo Yuan

    (CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences)

  • Jixin Cao

    (Fudan University)

  • Liting Song

    (Fudan University)

  • Jinlong Chen

    (Fudan University)

  • Jiayi Qiu

    (Fudan University)

  • Zilong Qiu

    (CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
    Fudan University
    Shanghai Jiao Tong University School of Medicine)

  • Xing-Ming Zhao

    (Fudan University
    Fudan University
    Fudan University)

  • Jingqi Chen

    (Fudan University
    Fudan University
    Fudan University)

  • Tian-Lin Cheng

    (Fudan University)

Abstract

Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.

Suggested Citation

  • Shuqian Zhang & Bo Yuan & Jixin Cao & Liting Song & Jinlong Chen & Jiayi Qiu & Zilong Qiu & Xing-Ming Zhao & Jingqi Chen & Tian-Lin Cheng, 2023. "TadA orthologs enable both cytosine and adenine editing of base editors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36003-3
    DOI: 10.1038/s41467-023-36003-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36003-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36003-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Minh Thuan Nguyen Tran & Mohd Khairul Nizam Mohd Khalid & Qi Wang & Jacqueline K. R. Walker & Grace E. Lidgerwood & Kimberley L. Dilworth & Leszek Lisowski & Alice Pébay & Alex W. Hewitt, 2020. "Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Shuo Li & Bo Yuan & Jixin Cao & Jingqi Chen & Jinlong Chen & Jiayi Qiu & Xing-Ming Zhao & Xiaolin Wang & Zilong Qiu & Tian-Lin Cheng, 2020. "Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    5. Yajing Liu & Changyang Zhou & Shisheng Huang & Lu Dang & Yu Wei & Jun He & Yingsi Zhou & Shaoshuai Mao & Wanyu Tao & Yu Zhang & Hui Yang & Xingxu Huang & Tian Chi, 2020. "A Cas-embedding strategy for minimizing off-target effects of DNA base editors," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Jianan Li & Wenxia Yu & Shisheng Huang & Susu Wu & Liping Li & Jiankui Zhou & Yu Cao & Xingxu Huang & Yunbo Qiao, 2021. "Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Julian Grünewald & Ronghao Zhou & Sara P. Garcia & Sowmya Iyer & Caleb A. Lareau & Martin J. Aryee & J. Keith Joung, 2019. "Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors," Nature, Nature, vol. 569(7756), pages 433-437, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chanjing Feng & Kaiyun Xin & Yanfei Du & Jingwen Zou & Xiaoxing Xing & Qi Xiu & Yijie Zhang & Rui Zhang & Weiwei Huang & Qinhu Wang & Cong Jiang & Xiaojie Wang & Zhensheng Kang & Jin-Rong Xu & Huiquan, 2024. "Unveiling the A-to-I mRNA editing machinery and its regulation and evolution in fungi," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Junhao Fu & Qing Li & Xiaoyu Liu & Tianxiang Tu & Xiujuan Lv & Xidi Yin & Jineng Lv & Zongming Song & Jia Qu & Jinwei Zhang & Jinsong Li & Feng Gu, 2021. "Human cell based directed evolution of adenine base editors with improved efficiency," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Daniel C. Volke & Román A. Martino & Ekaterina Kozaeva & Andrea M. Smania & Pablo I. Nikel, 2022. "Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Yuting Chen & Eriona Hysolli & Anlu Chen & Stephen Casper & Songlei Liu & Kevin Yang & Chenli Liu & George Church, 2022. "Multiplex base editing to convert TAG into TAA codons in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. J. Ferreira da Silva & G. P. Oliveira & E. A. Arasa-Verge & C. Kagiou & A. Moretton & G. Timelthaler & J. Jiricny & J. I. Loizou, 2022. "Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ju-Chan Park & Yun-Jeong Kim & Gue-Ho Hwang & Chan Young Kang & Sangsu Bae & Hyuk-Jin Cha, 2024. "Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Zeyu Lu & Lingtian Zhang & Qing Mu & Junyang Liu & Yu Chen & Haoyuan Wang & Yanjun Zhang & Rui Su & Ruijun Wang & Zhiying Wang & Qi Lv & Zhihong Liu & Jiasen Liu & Yunhua Li & Yanhong Zhao, 2024. "Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats," Agriculture, MDPI, vol. 14(3), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36003-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.