IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49270-5.html
   My bibliography  Save this article

Covalently bridging graphene edges for improving mechanical and electrical properties of fibers

Author

Listed:
  • Ling Ding

    (Soochow University)

  • Tianqi Xu

    (Soochow University
    Beijing University of Chemical Technology)

  • Jiawen Zhang

    (Soochow University
    Beijing University of Chemical Technology)

  • Jinpeng Ji

    (Soochow University)

  • Zhaotao Song

    (Soochow University
    Beijing University of Chemical Technology)

  • Yanan Zhang

    (Soochow University)

  • Yijun Xu

    (Chinese Academy of Sciences)

  • Tong Liu

    (Chinese Academy of Sciences)

  • Yang Liu

    (Chinese Academy of Sciences)

  • Zihan Zhang

    (National Institute for Materials Science)

  • Wenbin Gong

    (Xuzhou University of Technology)

  • Yunong Wang

    (Soochow University)

  • Zhenzhong Shi

    (Soochow University)

  • Renzhi Ma

    (National Institute for Materials Science)

  • Jianxin Geng

    (Beijing University of Chemical Technology
    Tiangong University)

  • Huynh Thien Ngo

    (National Institute for Materials Science)

  • Fengxia Geng

    (Soochow University
    Beijing Graphene Institute)

  • Zhongfan Liu

    (Beijing Graphene Institute
    Peking University)

Abstract

Assembling graphene sheets into macroscopic fibers with graphitic layers uniaxially aligned along the fiber axis is of both fundamental and technological importance. However, the optimal performance of graphene-based fibers has been far lower than what is expected based on the properties of individual graphene. Here we show that both mechanical properties and electrical conductivity of graphene-based fibers can be significantly improved if bridges are created between graphene edges through covalent conjugating aromatic amide bonds. The improved electrical conductivity is likely due to extended electron conjugation over the aromatic amide bridged graphene sheets. The larger sheets also result in improved π-π stacking, which, along with the robust aromatic amide linkage, provides high mechanical strength. In our experiments, graphene edges were bridged using the established wet-spinning technique in the presence of an aromatic amine linker, which selectively reacts to carboxyl groups at the graphene edge sites. This technique is already industrial and can be easily upscaled. Our methodology thus paves the way to the fabrication of high-performance macroscopic graphene fibers under optimal techno-economic and ecological conditions.

Suggested Citation

  • Ling Ding & Tianqi Xu & Jiawen Zhang & Jinpeng Ji & Zhaotao Song & Yanan Zhang & Yijun Xu & Tong Liu & Yang Liu & Zihan Zhang & Wenbin Gong & Yunong Wang & Zhenzhong Shi & Renzhi Ma & Jianxin Geng & H, 2024. "Covalently bridging graphene edges for improving mechanical and electrical properties of fibers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49270-5
    DOI: 10.1038/s41467-024-49270-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49270-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49270-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan B. Dalton & Steve Collins & Edgar Muñoz & Joselito M. Razal & Von Howard Ebron & John P. Ferraris & Jonathan N. Coleman & Bog G. Kim & Ray H. Baughman, 2003. "Super-tough carbon-nanotube fibres," Nature, Nature, vol. 423(6941), pages 703-703, June.
    2. Zhen Xu & Chao Gao, 2011. "Graphene chiral liquid crystals and macroscopic assembled fibres," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    3. K. S. Novoselov & V. I. Fal′ko & L. Colombo & P. R. Gellert & M. G. Schwab & K. Kim, 2012. "A roadmap for graphene," Nature, Nature, vol. 490(7419), pages 192-200, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    2. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    3. Peng Li & Ziqiu Wang & Yuxiang Qi & Gangfeng Cai & Yingjie Zhao & Xin Ming & Zizhen Lin & Weigang Ma & Jiahao Lin & Hang Li & Kai Shen & Yingjun Liu & Zhen Xu & Zhiping Xu & Chao Gao, 2024. "Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Dehui Zhang & Zhen Xu & Gong Cheng & Zhe Liu & Audrey Rose Gutierrez & Wenzhe Zang & Theodore B. Norris & Zhaohui Zhong, 2022. "Strongly enhanced THz generation enabled by a graphene hot-carrier fast lane," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Jia Yen Lai & Lock Hei Ngu & Siti Salwa Hashim, 2021. "A review of CO2 adsorbents performance for different carbon capture technology processes conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 1076-1117, October.
    6. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).
    9. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
    10. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    11. Guangdong Chen & Hanwen Pei & Xuefei Zhang & Wei Shi & Mingjie Liu & Charl F. J. Faul & Bai Yang & Yan Zhao & Kun Liu & Zhongyuan Lu & Zhihong Nie & Yang Yang, 2022. "Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Le Cheng & Chi Shun Yeung & Libei Huang & Ge Ye & Jie Yan & Wanpeng Li & Chunki Yiu & Fu-Rong Chen & Hanchen Shen & Ben Zhong Tang & Yang Ren & Xinge Yu & Ruquan Ye, 2024. "Flash healing of laser-induced graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
    14. Christos Kalantaridis, 2019. "Is university ownership a sub-optimal property rights regime for commercialisation? Information conditions and entrepreneurship in Greater Manchester, England," The Journal of Technology Transfer, Springer, vol. 44(1), pages 231-249, February.
    15. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    16. Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Sanjay K. Arora & Jan Youtie & Philip Shapira & Lidan Gao & TingTing Ma, 2013. "Entry strategies in an emerging technology: a pilot web-based study of graphene firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1189-1207, June.
    18. Akbari, Elnaz & Buntat, Zolkafle & Nikoukar, Ali & Kheirandish, Azadeh & Khaledian, Mohsen & Afroozeh, Abdolkarim, 2016. "Sensor application in Direct Methanol Fuel Cells (DMFCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1125-1139.
    19. Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Muzaffar, Aqib & Ahamed, M. Basheer & Hussain, Chaudhery Mustansar, 2024. "Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49270-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.