IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37918-7.html
   My bibliography  Save this article

Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications

Author

Listed:
  • Xinyu Huang

    (Huazhong University of Science and Technology
    Hubei Yangtze Memory Laboratories)

  • Luman Zhang

    (Huazhong University of Science and Technology)

  • Lei Tong

    (Huazhong University of Science and Technology)

  • Zheng Li

    (Huazhong University of Science and Technology)

  • Zhuiri Peng

    (Huazhong University of Science and Technology)

  • Runfeng Lin

    (Huazhong University of Science and Technology)

  • Wenhao Shi

    (Huazhong University of Science and Technology)

  • Kan-Hao Xue

    (Huazhong University of Science and Technology)

  • Hongwei Dai

    (Huazhong University of Science and Technology)

  • Hui Cheng

    (Huazhong University of Science and Technology)

  • Danilo de Camargo Branco

    (Purdue University)

  • Jianbin Xu

    (The Chinese University of Hong Kong)

  • Junbo Han

    (Huazhong University of Science and Technology)

  • Gary J. Cheng

    (Purdue University)

  • Xiangshui Miao

    (Huazhong University of Science and Technology
    Hubei Yangtze Memory Laboratories)

  • Lei Ye

    (Huazhong University of Science and Technology
    Hubei Yangtze Memory Laboratories
    Shanghai Institute of Technical Physics Chinese Academy of Sciences)

Abstract

The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.

Suggested Citation

  • Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37918-7
    DOI: 10.1038/s41467-023-37918-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37918-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37918-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kha Tran & Galan Moody & Fengcheng Wu & Xiaobo Lu & Junho Choi & Kyounghwan Kim & Amritesh Rai & Daniel A. Sanchez & Jiamin Quan & Akshay Singh & Jacob Embley & André Zepeda & Marshall Campbell & Trav, 2019. "Evidence for moiré excitons in van der Waals heterostructures," Nature, Nature, vol. 567(7746), pages 71-75, March.
    2. Chaowei Hu & Kyle N. Gordon & Pengfei Liu & Jinyu Liu & Xiaoqing Zhou & Peipei Hao & Dushyant Narayan & Eve Emmanouilidou & Hongyi Sun & Yuntian Liu & Harlan Brawer & Arthur P. Ramirez & Lei Ding & Hu, 2020. "A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. K. S. Novoselov & V. I. Fal′ko & L. Colombo & P. R. Gellert & M. G. Schwab & K. Kim, 2012. "A roadmap for graphene," Nature, Nature, vol. 490(7419), pages 192-200, October.
    4. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    5. Deji Akinwande & Cedric Huyghebaert & Ching-Hua Wang & Martha I. Serna & Stijn Goossens & Lain-Jong Li & H.-S. Philip Wong & Frank H. L. Koppens, 2019. "Graphene and two-dimensional materials for silicon technology," Nature, Nature, vol. 573(7775), pages 507-518, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su Kong Chong & Yang Cheng & Huiyuan Man & Seng Huat Lee & Yu Wang & Bingqian Dai & Masaki Tanabe & Ting-Hsun Yang & Zhiqiang Mao & Kathryn A. Moler & Kang L. Wang, 2024. "Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Veronica R. Policht & Henry Mittenzwey & Oleg Dogadov & Manuel Katzer & Andrea Villa & Qiuyang Li & Benjamin Kaiser & Aaron M. Ross & Francesco Scotognella & Xiaoyang Zhu & Andreas Knorr & Malte Selig, 2023. "Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Fateme Mahdikhanysarvejahany & Daniel N. Shanks & Matthew Klein & Qian Wang & Michael R. Koehler & David G. Mandrus & Takashi Taniguchi & Kenji Watanabe & Oliver L. A. Monti & Brian J. LeRoy & John R., 2022. "Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Dehui Zhang & Zhen Xu & Gong Cheng & Zhe Liu & Audrey Rose Gutierrez & Wenzhe Zang & Theodore B. Norris & Zhaohui Zhong, 2022. "Strongly enhanced THz generation enabled by a graphene hot-carrier fast lane," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    11. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Su Kong Chong & Yang Cheng & Huiyuan Man & Seng Huat Lee & Yu Wang & Bingqian Dai & Masaki Tanabe & Ting-Hsun Yang & Zhiqiang Mao & Kathryn A. Moler & Kang L. Wang, 2024. "Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    14. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Shuai Zhang & Baichang Li & Xinzhong Chen & Francesco L. Ruta & Yinming Shao & Aaron J. Sternbach & A. S. McLeod & Zhiyuan Sun & Lin Xiong & S. L. Moore & Xinyi Xu & Wenjing Wu & Sara Shabani & Lin Zh, 2022. "Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37918-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.