IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44692-7.html
   My bibliography  Save this article

Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres

Author

Listed:
  • Peng Li

    (Zhejiang University)

  • Ziqiu Wang

    (Zhejiang University)

  • Yuxiang Qi

    (Zhejiang University)

  • Gangfeng Cai

    (Zhejiang University)

  • Yingjie Zhao

    (Tsinghua University)

  • Xin Ming

    (Zhejiang University)

  • Zizhen Lin

    (Tsinghua University)

  • Weigang Ma

    (Tsinghua University)

  • Jiahao Lin

    (Zhejiang University)

  • Hang Li

    (Zhejiang University)

  • Kai Shen

    (Zhejiang University)

  • Yingjun Liu

    (Zhejiang University
    Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering)

  • Zhen Xu

    (Zhejiang University
    Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering)

  • Zhiping Xu

    (Tsinghua University)

  • Chao Gao

    (Zhejiang University
    Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering)

Abstract

Macroscopic fibres assembled from two-dimensional (2D) nanosheets are new and impressing type of fibre materials besides those from one-dimensional (1D) polymers, such as graphene fibres. However, the preparation and property-enhancing technologies of these fibres follow those from 1D polymers by improving the orientation along the fibre axis, leading to non-optimized microstructures and low integrated performances. Here, we show a concept of bidirectionally promoting the assembly order, making graphene fibres achieve synergistically improved mechanical and thermal properties. Concentric arrangement of graphene oxide sheets in the cross-section and alignment along fibre axis are realized by multiple shear-flow fields, which bidirectionally promotes the sheet-order of graphene sheets in solid fibres, generates densified and crystalline graphitic structures, and produces graphene fibres with ultrahigh modulus (901 GPa) and thermal conductivity (1660 W m−1 K−1). We believe that the concept would enhance both scientific and technological cognition of the assembly process of 2D nanosheets.

Suggested Citation

  • Peng Li & Ziqiu Wang & Yuxiang Qi & Gangfeng Cai & Yingjie Zhao & Xin Ming & Zizhen Lin & Weigang Ma & Jiahao Lin & Hang Li & Kai Shen & Yingjun Liu & Zhen Xu & Zhiping Xu & Chao Gao, 2024. "Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44692-7
    DOI: 10.1038/s41467-024-44692-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44692-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44692-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Li & Mincheng Yang & Yingjun Liu & Huasong Qin & Jingran Liu & Zhen Xu & Yilun Liu & Fanxu Meng & Jiahao Lin & Fang Wang & Chao Gao, 2020. "Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Zhen Xu & Chao Gao, 2011. "Graphene chiral liquid crystals and macroscopic assembled fibres," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    2. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    3. Ling Ding & Tianqi Xu & Jiawen Zhang & Jinpeng Ji & Zhaotao Song & Yanan Zhang & Yijun Xu & Tong Liu & Yang Liu & Zihan Zhang & Wenbin Gong & Yunong Wang & Zhenzhong Shi & Renzhi Ma & Jianxin Geng & H, 2024. "Covalently bridging graphene edges for improving mechanical and electrical properties of fibers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Lin, Zizhen & Ping, Xiaofan & Zhao, Dongming & Cai, Zihe & Wang, Xingtao & Zhang, Chi & Wang, Lichuang & Li, Menglei & Chen, Xiongfei & Niu, Jingkai & Xue, Yao & Liu, Yun & Li, Xinlian & Qin, Xiaojun , 2024. "A biomimetic non-woven fabric with passive thermal-insulation and active heat-recovering," Applied Energy, Elsevier, vol. 353(PA).
    5. Guangdong Chen & Hanwen Pei & Xuefei Zhang & Wei Shi & Mingjie Liu & Charl F. J. Faul & Bai Yang & Yan Zhao & Kun Liu & Zhongyuan Lu & Zhihong Nie & Yang Yang, 2022. "Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Ke Zhan & Yucong Chen & Zhiyuan Xiong & Yulun Zhang & Siyuan Ding & Fangzheng Zhen & Zhenshi Liu & Qiang Wei & Minsu Liu & Bo Sun & Hui-Ming Cheng & Ling Qiu, 2024. "Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44692-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.