IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32190-7.html
   My bibliography  Save this article

Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes

Author

Listed:
  • Zeyu Deng

    (National University of Singapore)

  • Tara P. Mishra

    (National University of Singapore
    Singapore-MIT Alliance for Research and Technology)

  • Eunike Mahayoni

    (Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
    RS2E, Réseau Français sur le Stockage Electrochimique de l’Energie, FR CNRS 3459
    ALISTORE-ERI European Research Institute, FR CNRS 3104)

  • Qianli Ma

    (Materials Synthesis and Processing (IEK-1))

  • Aaron Jue Kang Tieu

    (National University of Singapore)

  • Olivier Guillon

    (Materials Synthesis and Processing (IEK-1)
    Helmholtz-Institute Münster, c/o Forschungszentrum Jülich GmbH)

  • Jean-Noël Chotard

    (Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
    RS2E, Réseau Français sur le Stockage Electrochimique de l’Energie, FR CNRS 3459
    ALISTORE-ERI European Research Institute, FR CNRS 3104)

  • Vincent Seznec

    (Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
    RS2E, Réseau Français sur le Stockage Electrochimique de l’Energie, FR CNRS 3459
    ALISTORE-ERI European Research Institute, FR CNRS 3104)

  • Anthony K. Cheetham

    (National University of Singapore
    University of California)

  • Christian Masquelier

    (Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
    RS2E, Réseau Français sur le Stockage Electrochimique de l’Energie, FR CNRS 3459
    ALISTORE-ERI European Research Institute, FR CNRS 3104)

  • Gopalakrishnan Sai Gautam

    (Indian Institute of Science)

  • Pieremanuele Canepa

    (National University of Singapore
    Singapore-MIT Alliance for Research and Technology
    National University of Singapore)

Abstract

Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on Na1+xZr2SixP3−xO12 (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties. Although NASICON is a widely investigated system, transport properties derived from experiments or theory vary by orders of magnitude. We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulations to map the compositional space of NASICON over various time ranges, spatial resolutions and temperatures. Via electrochemical impedance spectroscopy measurements on samples with different sodium content, we find that the highest ionic conductivity (i.e., about 0.165 S cm–1 at 473 K) is experimentally achieved in Na3.4Zr2Si2.4P0.6O12, in line with simulations (i.e., about 0.170 S cm–1 at 473 K). The theoretical studies indicate that doped NASICON compounds (especially those with a silicon content x ≥ 2.4) can improve the Na-ion mobility compared to undoped NASICON compositions.

Suggested Citation

  • Zeyu Deng & Tara P. Mishra & Eunike Mahayoni & Qianli Ma & Aaron Jue Kang Tieu & Olivier Guillon & Jean-Noël Chotard & Vincent Seznec & Anthony K. Cheetham & Christian Masquelier & Gopalakrishnan Sai , 2022. "Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32190-7
    DOI: 10.1038/s41467-022-32190-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32190-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32190-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin Ouyang & Jingyang Wang & Tanjin He & Christopher J. Bartel & Haoyan Huo & Yan Wang & Valentina Lacivita & Haegyeom Kim & Gerbrand Ceder, 2021. "Synthetic accessibility and stability rules of NASICONs," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jingyang Wang & Tanjin He & Xiaochen Yang & Zijian Cai & Yan Wang & Valentina Lacivita & Haegyeom Kim & Bin Ouyang & Gerbrand Ceder, 2023. "Design principles for NASICON super-ionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    4. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Romo Jiménez, Oscar Arturo & Noda, René López & Portelles, J. & Vázquez Arce, Jorge Luis & Iñiguez, Enrique & López Mercado, Cesar Alberto & Solorio, Fernando & Rebellon, Julia & Read, John & Tiznado,, 2022. "The effect of temperature and bias on the energy storage of a Ru/YSZ/Ru thin-film device," Energy, Elsevier, vol. 253(C).
    7. So Takamoto & Chikashi Shinagawa & Daisuke Motoki & Kosuke Nakago & Wenwen Li & Iori Kurata & Taku Watanabe & Yoshihiro Yayama & Hiroki Iriguchi & Yusuke Asano & Tasuku Onodera & Takafumi Ishii & Taka, 2022. "Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Jingyang Wang & Tanjin He & Xiaochen Yang & Zijian Cai & Yan Wang & Valentina Lacivita & Haegyeom Kim & Bin Ouyang & Gerbrand Ceder, 2023. "Design principles for NASICON super-ionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Chen, Qi & Duan, Yongrui, 2023. "Impact of information disclosure on global supply chain greenwashing: Is more information transparency always better?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32190-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.