IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39522-1.html
   My bibliography  Save this article

A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries

Author

Listed:
  • Lv Hu

    (University of Science and Technology of China)

  • Jinzhu Wang

    (University of Science and Technology of China)

  • Kai Wang

    (University of Science and Technology of China)

  • Zhenqi Gu

    (University of Science and Technology of China)

  • Zhiwei Xi

    (University of Science and Technology of China)

  • Hui Li

    (University of Science and Technology of China)

  • Fang Chen

    (University of Science and Technology of China)

  • Youxi Wang

    (University of Science and Technology of China)

  • Zhenyu Li

    (University of Science and Technology of China)

  • Cheng Ma

    (University of Science and Technology of China
    National Synchrotron Radiation Laboratory)

Abstract

To enable the development of all-solid-state batteries, an inorganic solid-state electrolyte should demonstrate high ionic conductivity (i.e., > 1 mS cm−1 at 25 °C), compressibility (e.g., > 90% density under 250−350 MPa), and cost-effectiveness (e.g.,

Suggested Citation

  • Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39522-1
    DOI: 10.1038/s41467-023-39522-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39522-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39522-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    2. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Longlong Wang & Ruicong Xie & Bingbing Chen & Xinrun Yu & Jun Ma & Chao Li & Zhiwei Hu & Xingwei Sun & Chengjun Xu & Shanmu Dong & Ting-Shan Chan & Jun Luo & Guanglei Cui & Liquan Chen, 2020. "In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Kai Wang & Qingyong Ren & Zhenqi Gu & Chaomin Duan & Jinzhu Wang & Feng Zhu & Yuanyuan Fu & Jipeng Hao & Jinfeng Zhu & Lunhua He & Chin-Wei Wang & Yingying Lu & Jie Ma & Cheng Ma, 2021. "A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Laidong Zhou & Tong-Tong Zuo & Chun Yuen Kwok & Se Young Kim & Abdeljalil Assoud & Qiang Zhang & Jürgen Janek & Linda F. Nazar, 2022. "High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes," Nature Energy, Nature, vol. 7(1), pages 83-93, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Murukadas, Deepu & Cho, Yeonhwa & Lee, Woongki & Lee, Sooyong & Kim, Hwajeong & Kim, Youngkyoo, 2024. "Lithium supercapacitors with environmentally-friend water-processable solid-state hybrid electrolytes of zinc oxide/polymer/lithium hydroxide," Energy, Elsevier, vol. 290(C).
    3. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Xiaona Li & Jung Tae Kim & Jing Luo & Changtai Zhao & Yang Xu & Tao Mei & Ruying Li & Jianwen Liang & Xueliang Sun, 2024. "Structural regulation of halide superionic conductors for all-solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Zhenqi Gu & Jiale Ma & Feng Zhu & Ting Liu & Kai Wang & Ce-Wen Nan & Zhenyu Li & Cheng Ma, 2023. "Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Shumin Zhang & Feipeng Zhao & Jiatang Chen & Jiamin Fu & Jing Luo & Sandamini H. Alahakoon & Lo-Yueh Chang & Renfei Feng & Mohsen Shakouri & Jianwen Liang & Yang Zhao & Xiaona Li & Le He & Yining Huan, 2023. "A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    9. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    11. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    13. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    14. Nian Zhang & Guoxi Ren & Lili Li & Zhi Wang & Pengfei Yu & Xiaobao Li & Jing Zhou & Hui Zhang & Linjuan Zhang & Zhi Liu & Xiaosong Liu, 2024. "Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
    17. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    19. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39522-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.