IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21488-7.html
   My bibliography  Save this article

A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries

Author

Listed:
  • Erik A. Wu

    (University of California San Diego)

  • Swastika Banerjee

    (University of California San Diego)

  • Hanmei Tang

    (University of California San Diego)

  • Peter M. Richardson

    (University of California Santa Barbara)

  • Jean-Marie Doux

    (University of California San Diego)

  • Ji Qi

    (University of California San Diego)

  • Zhuoying Zhu

    (University of California San Diego)

  • Antonin Grenier

    (Stony Brook University)

  • Yixuan Li

    (University of California San Diego)

  • Enyue Zhao

    (University of California San Diego)

  • Grayson Deysher

    (University of California San Diego)

  • Elias Sebti

    (University of California Santa Barbara)

  • Han Nguyen

    (University of California San Diego)

  • Ryan Stephens

    (Shell International Exploration & Production Inc.)

  • Guy Verbist

    (Shell Global Solutions International BV)

  • Karena W. Chapman

    (Stony Brook University)

  • Raphaële J. Clément

    (University of California Santa Barbara)

  • Abhik Banerjee

    (University of California San Diego
    Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST))

  • Ying Shirley Meng

    (University of California San Diego
    University of California San Diego)

  • Shyue Ping Ong

    (University of California San Diego
    University of California San Diego)

Abstract

Rechargeable solid-state sodium-ion batteries (SSSBs) hold great promise for safer and more energy-dense energy storage. However, the poor electrochemical stability between current sulfide-based solid electrolytes and high-voltage oxide cathodes has limited their long-term cycling performance and practicality. Here, we report the discovery of the ion conductor Na3-xY1-xZrxCl6 (NYZC) that is both electrochemically stable (up to 3.8 V vs. Na/Na+) and chemically compatible with oxide cathodes. Its high ionic conductivity of 6.6 × 10−5 S cm−1 at ambient temperature, several orders of magnitude higher than oxide coatings, is attributed to abundant Na vacancies and cooperative MCl6 rotation, resulting in an extremely low interfacial impedance. A SSSB comprising a NaCrO2 + NYZC composite cathode, Na3PS4 electrolyte, and Na-Sn anode exhibits an exceptional first-cycle Coulombic efficiency of 97.1% at room temperature and can cycle over 1000 cycles with 89.3% capacity retention at 40 °C. These findings highlight the immense potential of halides for SSSB applications.

Suggested Citation

  • Erik A. Wu & Swastika Banerjee & Hanmei Tang & Peter M. Richardson & Jean-Marie Doux & Ji Qi & Zhuoying Zhu & Antonin Grenier & Yixuan Li & Enyue Zhao & Grayson Deysher & Elias Sebti & Han Nguyen & Ry, 2021. "A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21488-7
    DOI: 10.1038/s41467-021-21488-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21488-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21488-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge Sun & Chenjie Lou & Boqian Yi & Wanqing Jia & Zhixuan Wei & Shiyu Yao & Ziheng Lu & Gang Chen & Zexiang Shen & Mingxue Tang & Fei Du, 2023. "Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hong Fang & Puru Jena, 2022. "Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Kai Wang & Zhenqi Gu & Zhiwei Xi & Lv Hu & Cheng Ma, 2023. "Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Kit Barker & Sarah L. McKinney & Raül Artal & Ricardo Jiménez & Nuria Tapia-Ruiz & Stephen J. Skinner & Ainara Aguadero & Ieuan D. Seymour, 2024. "The importance of A-site cation chemistry in superionic halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21488-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.