IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09503-4.html
   My bibliography  Save this article

Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells

Author

Listed:
  • Ying Wang

    (Wuhan University
    Wuhan University)

  • Yao Yang

    (Cornell University, Ithaca)

  • Shuangfeng Jia

    (Wuhan University)

  • Xiaoming Wang

    (National Taiwan University of Science and Technology)

  • Kangjie Lyu

    (Wuhan University)

  • Yanqiu Peng

    (Wuhan University)

  • He Zheng

    (Wuhan University)

  • Xing Wei

    (Wuhan University)

  • Huan Ren

    (Wuhan University)

  • Li Xiao

    (Wuhan University)

  • Jianbo Wang

    (Wuhan University
    Wuhan University)

  • David A. Muller

    (Cornell University, Ithaca)

  • Héctor D. Abruña

    (Cornell University, Ithaca)

  • Bing Joe Hwang

    (National Taiwan University of Science and Technology)

  • Juntao Lu

    (Wuhan University)

  • Lin Zhuang

    (Wuhan University
    Wuhan University)

Abstract

Alkaline polymer electrolyte fuel cells are a class of fuel cells that enable the use of non-precious metal catalysts, particularly for the oxygen reduction reaction at the cathode. While there have been alternative materials exhibiting Pt-comparable activity in alkaline solutions, to the best of our knowledge none have outperformed Pt in fuel-cell tests. Here we report a Mn-Co spinel cathode that can deliver greater power, at high current densities, than a Pt cathode. The power density of the cell employing the Mn-Co cathode reaches 1.1 W cm−2 at 2.5 A cm−2 at 60 oC. Moreover, this catalyst outperforms Pt at low humidity. In-depth characterization reveals that the remarkable performance originates from synergistic effects where the Mn sites bind O2 and the Co sites activate H2O, so as to facilitate the proton-coupled electron transfer processes. Such an electrocatalytic synergy is pivotal to the high-rate oxygen reduction, particularly under water depletion/low humidity conditions.

Suggested Citation

  • Ying Wang & Yao Yang & Shuangfeng Jia & Xiaoming Wang & Kangjie Lyu & Yanqiu Peng & He Zheng & Xing Wei & Huan Ren & Li Xiao & Jianbo Wang & David A. Muller & Héctor D. Abruña & Bing Joe Hwang & Junta, 2019. "Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09503-4
    DOI: 10.1038/s41467-019-09503-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09503-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09503-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    3. Ratso, Sander & Zitolo, Andrea & Käärik, Maike & Merisalu, Maido & Kikas, Arvo & Kisand, Vambola & Rähn, Mihkel & Paiste, Päärn & Leis, Jaan & Sammelselg, Väino & Holdcroft, Steven & Jaouen, Frédéric , 2021. "Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons," Renewable Energy, Elsevier, vol. 167(C), pages 800-810.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09503-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.