IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48469-w.html
   My bibliography  Save this article

An analytic theory for the degree of Arctic Amplification

Author

Listed:
  • Wenyu Zhou

    (Pacific Northwest National Laboratory)

  • L. Ruby Leung

    (Pacific Northwest National Laboratory)

  • Shang-Ping Xie

    (University of California San Diego)

  • Jian Lu

    (Pacific Northwest National Laboratory)

Abstract

Arctic Amplification (AA), the amplified surface warming in the Arctic relative to the globe, is a salient feature of climate change. While the basic physical picture of AA has been depicted, how its degree is determined has not been clearly understood. Here, by deciphering atmospheric heat transport (AHT), we build a two-box energy-balance model of AA and derive that the degree of AA is a simple nonlinear function of the Arctic and global feedbacks, the meridional heterogeneity in radiative forcing, and the partial sensitivities of AHT to global mean and meridional gradient of warming. The formula captures the varying AA in climate models and attributes the spread to models’ feedback parameters and AHT physics. The formula clearly illustrates how essential physics mutually determine the degree of AA and limits its range within 1.5-3.5. Our results articulate AHT as both forcing and feedback to AA, highlight its fundamental role in forming a baseline AA that exists even with uniform feedbacks, and underscore its partial sensitivities instead of its total change as key parameters of AA. The lapse-rate feedback has been widely recognized as a major contributor to AA but its effect is fully offset by the water-vapor feedback.

Suggested Citation

  • Wenyu Zhou & L. Ruby Leung & Shang-Ping Xie & Jian Lu, 2024. "An analytic theory for the degree of Arctic Amplification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48469-w
    DOI: 10.1038/s41467-024-48469-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48469-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48469-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    3. Chad W. Thackeray & Alex Hall, 2019. "An emergent constraint on future Arctic sea-ice albedo feedback," Nature Climate Change, Nature, vol. 9(12), pages 972-978, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    4. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Clifford Chuwah & Twan Noije & Detlef Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    7. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    8. Hasan Sohail & Virpi Kollanus & Pekka Tiittanen & Alexandra Schneider & Timo Lanki, 2020. "Heat, Heatwaves and Cardiorespiratory Hospital Admissions in Helsinki, Finland," IJERPH, MDPI, vol. 17(21), pages 1-11, October.
    9. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Bipandeep Sharma, 2021. "‘De-Securitising the Arctic’ in Climate Change: An Indian Perspective," India Quarterly: A Journal of International Affairs, , vol. 77(4), pages 622-641, December.
    11. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    12. Binhe Luo & Dehai Luo & Aiguo Dai & Cunde Xiao & Ian Simmonds & Edward Hanna & James Overland & Jiaqi Shi & Xiaodan Chen & Yao Yao & Wansuo Duan & Yimin Liu & Qiang Zhang & Xiyan Xu & Yina Diao & Zhin, 2024. "Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Rachel H. White & Sam Anderson & James F. Booth & Ginni Braich & Christina Draeger & Cuiyi Fei & Christopher D. G. Harley & Sarah B. Henderson & Matthias Jakob & Carie-Ann Lau & Lualawi Mareshet Admas, 2023. "The unprecedented Pacific Northwest heatwave of June 2021," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Xiaoqing Liu & Matthew Huber & Gavin L. Foster & Andrew Dessler & Yi Ge Zhang, 2022. "Persistent high latitude amplification of the Pacific Ocean over the past 10 million years," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    16. Jennifer A. Francis & Stephen J. Vavrus & Judah Cohen, 2017. "Amplified Arctic warming and mid‐latitude weather: new perspectives on emerging connections," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
    17. Yufei Zou & Philip J. Rasch & Hailong Wang & Zuowei Xie & Rudong Zhang, 2021. "Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
    19. Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48469-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.