IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015938.html
   My bibliography  Save this article

Long-term assessment of wave conditions and wave energy resource in the Arctic Ocean

Author

Listed:
  • Christakos, Konstantinos
  • Lavidas, George
  • Gao, Zhen
  • Björkqvist, Jan-Victor

Abstract

It was recently shown that the Arctic has been warming much faster than the rest of the globe during the last decades. This warming has reduced the ice extent significantly, which will strongly impact the wave climate in the Arctic regions, thus affecting the design of marine structures, operations, and energy resources. This study focuses on the higher latitudes, and uses the advanced wave hindcast NORA3, which covers a big part of the North Atlantic and the whole Arctic Ocean, to analyze the spatio–temporal properties of wave height and wave energy flux during the last three decades. The most energetic waves in the Arctic Ocean are observed in the Greenland Sea and the Barents Sea. The study shows that the substantial diminishing of sea ice in the Arctic induces local and regional changes in both mean and extreme wave conditions. In the Arctic Ocean the changes in extreme wave height are more pronounced compared to changes in mean wave conditions. The results also indicate a strong positive trend in the extreme wave heights in the Arctic regions of the Barents Sea, the Kara Sea, the Laptev Sea, the East Siberian Sea, the Chukchi Sea, and the Beaufort Sea.

Suggested Citation

  • Christakos, Konstantinos & Lavidas, George & Gao, Zhen & Björkqvist, Jan-Victor, 2024. "Long-term assessment of wave conditions and wave energy resource in the Arctic Ocean," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015938
    DOI: 10.1016/j.renene.2023.119678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    2. Aiguo Dai & Dehai Luo & Mirong Song & Jiping Liu, 2019. "Arctic amplification is caused by sea-ice loss under increasing CO2," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Weather window analysis of Irish west coast wave data with relevance to operations & maintenance of marine renewables," Renewable Energy, Elsevier, vol. 52(C), pages 57-66.
    4. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    5. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    6. Binhe Luo & Dehai Luo & Aiguo Dai & Cunde Xiao & Ian Simmonds & Edward Hanna & James Overland & Jiaqi Shi & Xiaodan Chen & Yao Yao & Wansuo Duan & Yimin Liu & Qiang Zhang & Xiyan Xu & Yina Diao & Zhin, 2024. "Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    8. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    9. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    10. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    11. Simon Ambühl & Laurent Marquis & Jens Peter Kofoed & John Dalsgaard Sørensen, 2015. "Operation and maintenance strategies for wave energy converters," Journal of Risk and Reliability, , vol. 229(5), pages 417-441, October.
    12. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    13. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).
    14. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    15. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    16. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    17. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    18. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    19. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    20. Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.

    More about this item

    Keywords

    Waves; Energy; Extreme; Arctic; NORA3;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.