IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30018-y.html
   My bibliography  Save this article

Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides

Author

Listed:
  • Lei Su

    (University of California)

  • Huaixun Huyan

    (University of California)

  • Abhishek Sarkar

    (Technical University Darmstadt
    Karlsruhe Institute of Technology)

  • Wenpei Gao

    (University of California)

  • Xingxu Yan

    (University of California)

  • Christopher Addiego

    (University of California)

  • Robert Kruk

    (Karlsruhe Institute of Technology)

  • Horst Hahn

    (Technical University Darmstadt
    Karlsruhe Institute of Technology)

  • Xiaoqing Pan

    (University of California
    University of California
    University of California)

Abstract

The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties.

Suggested Citation

  • Lei Su & Huaixun Huyan & Abhishek Sarkar & Wenpei Gao & Xingxu Yan & Christopher Addiego & Robert Kruk & Horst Hahn & Xiaoqing Pan, 2022. "Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30018-y
    DOI: 10.1038/s41467-022-30018-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30018-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30018-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenpei Gao & Christopher Addiego & Hui Wang & Xingxu Yan & Yusheng Hou & Dianxiang Ji & Colin Heikes & Yi Zhang & Linze Li & Huaixun Huyan & Thomas Blum & Toshihiro Aoki & Yuefeng Nie & Darrell G. Sch, 2019. "Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy," Nature, Nature, vol. 575(7783), pages 480-484, November.
    2. Pranab Sarker & Tyler Harrington & Cormac Toher & Corey Oses & Mojtaba Samiee & Jon-Paul Maria & Donald W. Brenner & Kenneth S. Vecchio & Stefano Curtarolo, 2018. "High-entropy high-hardness metal carbides discovered by entropy descriptors," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Haidi Xu & Zihao Zhang & Jixing Liu & Chi-Linh Do-Thanh & Hao Chen & Shuhao Xu & Qinjing Lin & Yi Jiao & Jianli Wang & Yun Wang & Yaoqiang Chen & Sheng Dai, 2020. "Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Christina M. Rost & Edward Sachet & Trent Borman & Ali Moballegh & Elizabeth C. Dickey & Dong Hou & Jacob L. Jones & Stefano Curtarolo & Jon-Paul Maria, 2015. "Entropy-stabilized oxides," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    5. Qingqing Ding & Yin Zhang & Xiao Chen & Xiaoqian Fu & Dengke Chen & Sijing Chen & Lin Gu & Fei Wei & Hongbin Bei & Yanfei Gao & Minru Wen & Jixue Li & Ze Zhang & Ting Zhu & Robert O. Ritchie & Qian Yu, 2019. "Tuning element distribution, structure and properties by composition in high-entropy alloys," Nature, Nature, vol. 574(7777), pages 223-227, October.
    6. Abhishek Sarkar & Leonardo Velasco & Di Wang & Qingsong Wang & Gopichand Talasila & Lea de Biasi & Christian Kübel & Torsten Brezesinski & Subramshu S. Bhattacharya & Horst Hahn & Ben Breitung, 2018. "High entropy oxides for reversible energy storage," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Ling & Huacong Sun & Lisha Lu & Jingkun Zhang & Lei Liao & Jianlin Wang & Xiaowei Zhang & Yingying Lan & Renjie Li & Wengang Lu & Lejuan Cai & Xuedong Bai & Wenlong Wang, 2024. "Sustainable photocatalytic hydrogen peroxide production over octonary high-entropy oxide," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyang Nie & Liang Wu & Qinghua Zhang & Yunwei Huang & Qingda Liu & Xun Wang, 2024. "High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yanzhi Wang & Hangjuan He & Hao Lv & Fengrui Jia & Ben Liu, 2024. "Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yixiu Luo & Luchao Sun & Jiemin Wang & Tiefeng Du & Cui Zhou & Jie Zhang & Jingyang Wang, 2023. "Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Keun Su Kim & Martin Couillard & Ziqi Tang & Homin Shin & Daniel Poitras & Changjun Cheng & Olga Naboka & Dean Ruth & Mark Plunkett & Lixin Chen & Liliana Gaburici & Thomas Lacelle & Michel Nganbe & Y, 2024. "Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Yunqing Kang & Ovidiu Cretu & Jun Kikkawa & Koji Kimoto & Hiroki Nara & Asep Sugih Nugraha & Hiroki Kawamoto & Miharu Eguchi & Ting Liao & Ziqi Sun & Toru Asahi & Yusuke Yamauchi, 2023. "Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Igor Tsukerman, 2021. "Computational Electromagnetics: A Miscellany," J, MDPI, vol. 4(4), pages 1-16, December.
    11. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Hao Ling & Huacong Sun & Lisha Lu & Jingkun Zhang & Lei Liao & Jianlin Wang & Xiaowei Zhang & Yingying Lan & Renjie Li & Wengang Lu & Lejuan Cai & Xuedong Bai & Wenlong Wang, 2024. "Sustainable photocatalytic hydrogen peroxide production over octonary high-entropy oxide," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Sung-Kyun Jung & Hyeokjo Gwon & Hyungsub Kim & Gabin Yoon & Dongki Shin & Jihyun Hong & Changhoon Jung & Ju-Sik Kim, 2022. "Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Adánez-Rubio, Iñaki & Izquierdo, María T. & Brorsson, Joakim & Mei, Daofeng & Mattisson, Tobias & Adánez, Juan, 2024. "Use of a high-entropy oxide as an oxygen carrier for chemical looping," Energy, Elsevier, vol. 298(C).
    16. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    17. Jiace Hao & Tongde Wang & Ruohan Yu & Jian Cai & Guohua Gao & Zechao Zhuang & Qi Kang & Shuanglong Lu & Zhenhui Liu & Jinsong Wu & Guangming Wu & Mingliang Du & Dingsheng Wang & Han Zhu, 2024. "Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xuyang Zhou & Ali Ahmadian & Baptiste Gault & Colin Ophus & Christian H. Liebscher & Gerhard Dehm & Dierk Raabe, 2023. "Atomic motifs govern the decoration of grain boundaries by interstitial solutes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Chang Liu & Jing Rao & Zhongji Sun & Wenjun Lu & James P. Best & Xuehan Li & Wenzhen Xia & Yilun Gong & Ye Wei & Bozhao Zhang & Jun Ding & Ge Wu & En Ma, 2024. "Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30018-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.