IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28991-5.html
   My bibliography  Save this article

Damage-tolerant material design motif derived from asymmetrical rotation

Author

Listed:
  • Wei Wang

    (Monash University
    The University of Queensland)

  • Shu Jian Chen

    (The University of Queensland)

  • Weiqiang Chen

    (The University of Manchester)

  • Wenhui Duan

    (Monash University)

  • Jia Zie Lai

    (Monash University)

  • Kwesi Sagoe-Crentsil

    (Monash University)

Abstract

Motifs extracted from nature can lead to significant advances in materials design and have been used to tackle the apparent exclusivity between strength and damage tolerance of brittle materials. Here we present a segmental design motif found in arthropod exoskeleton, in which asymmetrical rotational degree of freedom is used in damage control in contrast to the conventional interfacial shear failure mechanism of existing design motifs. We realise this design motif in a compression-resisting lightweight brittle material, demonstrating a unique progressive failure behaviour that preserves material integrity with 60–80% of load-bearing capacity at >50% of compressive strain. This rotational degree of freedom further enables a periodic energy absorbance pattern during failure yielding 200% higher strength than the corresponding cellular structure and up to 97.9% reduction of post-damage residual stress compared with ductile materials. Fifty material combinations covering 27 types of materials analysed display potential progressive failure behaviour by this design motif, thereby establishing a broad spectrum of potential applications of the design motif for advanced materials design, energy storage/conversion and architectural structures.

Suggested Citation

  • Wei Wang & Shu Jian Chen & Weiqiang Chen & Wenhui Duan & Jia Zie Lai & Kwesi Sagoe-Crentsil, 2022. "Damage-tolerant material design motif derived from asymmetrical rotation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28991-5
    DOI: 10.1038/s41467-022-28991-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28991-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28991-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua J. Martin & Brad E. Fiore & Randall M. Erb, 2015. "Designing bioinspired composite reinforcement architectures via 3D magnetic printing," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. Silvan Gantenbein & Kunal Masania & Wilhelm Woigk & Jens P. W. Sesseg & Theo A. Tervoort & André R. Studart, 2018. "Three-dimensional printing of hierarchical liquid-crystal-polymer structures," Nature, Nature, vol. 561(7722), pages 226-230, September.
    3. M. Mirkhalaf & A. Khayer Dastjerdi & F. Barthelat, 2014. "Overcoming the brittleness of glass through bio-inspiration and micro-architecture," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    4. Héloïse Ragelle & Mark W. Tibbitt & Shang-Yun Wu & Michael A. Castillo & George Z. Cheng & Sidharta P. Gangadharan & Daniel G. Anderson & Michael J. Cima & Robert Langer, 2018. "Surface tension-assisted additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjun Prihar & Shashank Gupta & Hadi S. Esmaeeli & Reza Moini, 2024. "Tough double-bouligand architected concrete enabled by robotic additive manufacturing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Hong & Shiyuan Liu & Xiaodan Yang & Wang Hong & Yao Shan & Biao Wang & Zhuomin Zhang & Xiaodong Yan & Weikang Lin & Xuemu Li & Zehua Peng & Xiaote Xu & Zhengbao Yang, 2024. "A bioinspired surface tension-driven route toward programmed cellular ceramics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Wing Chung Liu & Vanessa Hui Yin Chou & Rohit Pratyush Behera & Hortense Le Ferrand, 2022. "Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xiaolu Sun & Shaoyun Chen & Bo Qu & Rui Wang & Yanyu Zheng & Xiaoying Liu & Wenjie Li & Jianhong Gao & Qinhui Chen & Dongxian Zhuo, 2023. "Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jiawei Li & Claudia Cherubini & Sergio Andres Galindo Torres & Zi Li & Nicola Pastore & Ling Li, 2018. "Laboratory Investigation of Flow Paths in 3D Self-Affine Fractures with Lattice Boltzmann Simulations," Energies, MDPI, vol. 11(1), pages 1-21, January.
    7. Yu Cang & Jiaqi Liu & Meguya Ryu & Bartlomiej Graczykowski & Junko Morikawa & Shu Yang & George Fytas, 2022. "On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28991-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.