IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7722d10.1038_s41586-018-0474-7.html
   My bibliography  Save this article

Three-dimensional printing of hierarchical liquid-crystal-polymer structures

Author

Listed:
  • Silvan Gantenbein

    (ETH Zürich)

  • Kunal Masania

    (ETH Zürich)

  • Wilhelm Woigk

    (ETH Zürich)

  • Jens P. W. Sesseg

    (ETH Zürich)

  • Theo A. Tervoort

    (ETH Zürich)

  • André R. Studart

    (ETH Zürich)

Abstract

Fibre-reinforced polymer structures are often used when stiff lightweight materials are required, such as in aircraft, vehicles and biomedical implants. Despite their very high stiffness and strength1, such lightweight materials require energy- and labour-intensive fabrication processes2, exhibit typically brittle fracture and are difficult to shape and recycle3,4. This is in stark contrast to lightweight biological materials such as bone, silk and wood, which form by directed self-assembly into complex, hierarchically structured shapes with outstanding mechanical properties5–11, and are circularly integrated into the environment. Here we demonstrate a three-dimensional (3D) printing approach to generate recyclable lightweight structures with hierarchical architectures, complex geometries and unprecedented stiffness and toughness. Their features arise from the self-assembly of liquid-crystal polymer molecules into highly oriented domains during extrusion of the molten feedstock material. By orienting the molecular domains with the print path, we are able to reinforce the polymer structure according to the expected mechanical stresses, leading to stiffness, strength and toughness that outperform state-of-the-art 3D-printed polymers by an order of magnitude and are comparable with the highest-performance lightweight composites1,12. The ability to combine the top-down shaping freedom of 3D printing with bottom-up molecular control over polymer orientation opens up the possibility to freely design and realize structures without the typical restrictions of current manufacturing processes.

Suggested Citation

  • Silvan Gantenbein & Kunal Masania & Wilhelm Woigk & Jens P. W. Sesseg & Theo A. Tervoort & André R. Studart, 2018. "Three-dimensional printing of hierarchical liquid-crystal-polymer structures," Nature, Nature, vol. 561(7722), pages 226-230, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7722:d:10.1038_s41586-018-0474-7
    DOI: 10.1038/s41586-018-0474-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0474-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0474-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Shu Jian Chen & Weiqiang Chen & Wenhui Duan & Jia Zie Lai & Kwesi Sagoe-Crentsil, 2022. "Damage-tolerant material design motif derived from asymmetrical rotation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiaolu Sun & Shaoyun Chen & Bo Qu & Rui Wang & Yanyu Zheng & Xiaoying Liu & Wenjie Li & Jianhong Gao & Qinhui Chen & Dongxian Zhuo, 2023. "Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yu Cang & Jiaqi Liu & Meguya Ryu & Bartlomiej Graczykowski & Junko Morikawa & Shu Yang & George Fytas, 2022. "On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7722:d:10.1038_s41586-018-0474-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.