IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47369-3.html
   My bibliography  Save this article

Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene

Author

Listed:
  • Daniel P. Lowry

    (GNS Science)

  • Holly K. Han

    (Los Alamos National Laboratory
    California Institute of Technology)

  • Nicholas R. Golledge

    (Victoria University of Wellington)

  • Natalya Gomez

    (McGill University)

  • Katelyn M. Johnson

    (GNS Science)

  • Robert M. McKay

    (Victoria University of Wellington)

Abstract

Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.

Suggested Citation

  • Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47369-3
    DOI: 10.1038/s41467-024-47369-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47369-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47369-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7469), pages 89-92, October.
    2. Nicholas R. Golledge & Elizabeth D. Keller & Natalya Gomez & Kaitlin A. Naughten & Jorge Bernales & Luke D. Trusel & Tamsin L. Edwards, 2019. "Global environmental consequences of twenty-first-century ice-sheet melt," Nature, Nature, vol. 566(7742), pages 65-72, February.
    3. K. Mezgec & B. Stenni & X. Crosta & V. Masson-Delmotte & C. Baroni & M. Braida & V. Ciardini & E. Colizza & R. Melis & M. C. Salvatore & M. Severi & C. Scarchilli & R. Traversi & R. Udisti & M. Frezzo, 2017. "Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Correction: Corrigendum: Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7472), pages 580-580, October.
    5. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Tyler R. Jones & Kurt M. Cuffey & William H. G. Roberts & Bradley R. Markle & Eric J. Steig & C. Max Stevens & Paul J. Valdes & T. J. Fudge & Michael Sigl & Abigail G. Hughes & Valerie Morris & Bruce , 2023. "Seasonal temperatures in West Antarctica during the Holocene," Nature, Nature, vol. 613(7943), pages 292-297, January.
    7. Peter U. Clark & Peter Huybers, 2009. "Interglacial and future sea level," Nature, Nature, vol. 462(7275), pages 856-857, December.
    8. Feng He & Peter U. Clark, 2022. "Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited," Nature Climate Change, Nature, vol. 12(5), pages 449-454, May.
    9. David Pollard & Robert M. DeConto, 2009. "Modelling West Antarctic ice sheet growth and collapse through the past five million years," Nature, Nature, vol. 458(7236), pages 329-332, March.
    10. Peter U. Clark & Feng He & Nicholas R. Golledge & Jerry X. Mitrovica & Andrea Dutton & Jeremy S. Hoffman & Sarah Dendy, 2020. "Oceanic forcing of penultimate deglacial and last interglacial sea-level rise," Nature, Nature, vol. 577(7792), pages 660-664, January.
    11. Feng He & Jeremy D. Shakun & Peter U. Clark & Anders E. Carlson & Zhengyu Liu & Bette L. Otto-Bliesner & John E. Kutzbach, 2013. "Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation," Nature, Nature, vol. 494(7435), pages 81-85, February.
    12. J. Kingslake & R. P. Scherer & T. Albrecht & J. Coenen & R. D. Powell & R. Reese & N. D. Stansell & S. Tulaczyk & M. G. Wearing & P. L. Whitehouse, 2018. "Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene," Nature, Nature, vol. 558(7710), pages 430-434, June.
    13. Pierre Deschamps & Nicolas Durand & Edouard Bard & Bruno Hamelin & Gilbert Camoin & Alexander L. Thomas & Gideon M. Henderson & Jun'ichi Okuno & Yusuke Yokoyama, 2012. "Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago," Nature, Nature, vol. 483(7391), pages 559-564, March.
    14. Pippa L. Whitehouse & Natalya Gomez & Matt A. King & Douglas A. Wiens, 2019. "Solid Earth change and the evolution of the Antarctic Ice Sheet," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
    2. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Dawei Li & Robert M. DeConto & David Pollard & Yongyun Hu, 2024. "Competing climate feedbacks of ice sheet freshwater discharge in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ilaria Crotti & Aurélien Quiquet & Amaelle Landais & Barbara Stenni & David J. Wilson & Mirko Severi & Robert Mulvaney & Frank Wilhelms & Carlo Barbante & Massimo Frezzotti, 2022. "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. H. W. Yang & T.-W. Kim & Pierre Dutrieux & A. K. Wåhlin & Adrian Jenkins & H. K. Ha & C. S. Kim & K.-H. Cho & T. Park & S. H. Lee & Y.-K. Cho, 2022. "Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. David K. Hutchinson & Laurie Menviel & Katrin J. Meissner & Andrew McC. Hogg, 2024. "East Antarctic warming forced by ice loss during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jenny A. Gales & Robert M. McKay & Laura De Santis & Michele Rebesco & Jan Sverre Laberg & Amelia E Shevenell & David Harwood & R. Mark Leckie & Denise K. Kulhanek & Maxine King & Molly Patterson & Re, 2023. "Climate-controlled submarine landslides on the Antarctic continental margin," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    10. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yusuke Yokoyama & Kurt Lambeck & Patrick Deckker & Tezer M. Esat & Jody M. Webster & Masao Nakada, 2022. "Towards solving the missing ice problem and the importance of rigorous model data comparisons," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    12. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    13. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Camille Hayatte Akhoudas & Jean-Baptiste Sallée & Gilles Reverdin & F. Alexander Haumann & Etienne Pauthenet & Christopher C. Chapman & Félix Margirier & Claire Lo Monaco & Nicolas Metzl & Julie Meill, 2023. "Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xuan Shan & Shantong Sun & Lixin Wu & Michael Spall, 2024. "Role of the Labrador Current in the Atlantic Meridional Overturning Circulation response to greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
    17. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    20. Chen Cheng & Adrian Jenkins & Paul R. Holland & Zhaomin Wang & Jihai Dong & Chengyan Liu, 2024. "Ice shelf basal channel shape determines channelized ice-ocean interactions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47369-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.