IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v165y2021i1d10.1007_s10584-021-03025-z.html
   My bibliography  Save this article

Seasonal evolution differences of east Asian summer monsoon precipitation between Bølling-Allerød and younger Dryas periods

Author

Listed:
  • Xueyuan Kuang

    (Nanjing University
    Stockholm University)

  • Frederik Schenk

    (Stockholm University
    Stockholm University
    Swedish Meteorological and Hydrological Institute)

  • Rienk Smittenberg

    (Stockholm University
    Stockholm University)

  • Petter Hällberg

    (Stockholm University
    Stockholm University)

  • Qiong Zhang

    (Stockholm University
    Stockholm University)

Abstract

The rapid warming trend during the last deglaciation triggered significant global climate instabilities due to a complex non-linear response of the climate system to the gradual increase in insolation over the northern hemisphere. Although climate impacts can be detected globally, major regional imprints such as seasonal evolution and changes of the East Asian Summer Monsoon (EASM) during the last deglaciation are still poorly constrained due to a lack of comprehensive proxy data. In this study, we compare how the extreme climate shifts are linked to changes in EASM precipitation over China between the unusually warm Bølling-Allerød (BA) interstadial and the following strong cooling of the Younger Dryas (YD) stadial. Our analysis is based on the transient atmosphere-ocean simulations of TraCE-21ka, in addition to new results from high-resolution simulations of the CESM1 model for the BA and YD time slices. We find that the earlier onset and stronger intensity of the EASM in the BA interstadial lead to more precipitation in early summer (May–June) but drier conditions during mid-summer (July–August) over Southern China compared to a stadial climate during the YD episode. For Northern China, we find the opposite response. The insolation change in spring and the forced response of the atmospheric system are thought to be responsible for these differences. Relative to the YD episode, the hemispheric temperature gradient during the BA period is enhanced due to the asymmetric warming between the two hemispheres, leading to an intensified northward equatorial cross flow. Combined with a stronger sensible heating of the Tibetan Plateau in spring and the related earlier northward shift of the westerly jet, the early onset of the EASM is triggered. The latent heat release, which is accompanied by the onset of the EASM and the sudden increasing precipitation over Southern China in early summer, contributes to the westward shift of the Western Pacific Subtropical High (WPSH) and eastward movement of the South Asia High (SAH) in mid-summer. Under the above conditions, Southern China experiences a hot and dry climate, while Northern China receives more precipitation. Additionally, the La Niña-like pattern of the equatorial Pacific also partly contributes to the strong EASM in the warm period by influencing the WPSH location and Pacific-North American (PNA) teleconnection pattern.

Suggested Citation

  • Xueyuan Kuang & Frederik Schenk & Rienk Smittenberg & Petter Hällberg & Qiong Zhang, 2021. "Seasonal evolution differences of east Asian summer monsoon precipitation between Bølling-Allerød and younger Dryas periods," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
  • Handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03025-z
    DOI: 10.1007/s10584-021-03025-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03025-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03025-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Barker & Paula Diz & Maryline J. Vautravers & Jennifer Pike & Gregor Knorr & Ian R. Hall & Wallace S. Broecker, 2009. "Interhemispheric Atlantic seesaw response during the last deglaciation," Nature, Nature, vol. 457(7233), pages 1097-1102, February.
    2. Houyun Zhou & Huazheng Guan & Baoquan Chi, 2007. "Record of winter monsoon strength," Nature, Nature, vol. 450(7168), pages 10-11, November.
    3. Linda K. Ayliffe & Michael K. Gagan & Jian-xin Zhao & Russell N. Drysdale & John C. Hellstrom & Wahyoe S. Hantoro & Michael L. Griffiths & Heather Scott-Gagan & Emma St Pierre & Joan A. Cowley & Bamba, 2013. "Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    4. Mahyar Mohtadi & Matthias Prange & Stephan Steinke, 2016. "Palaeoclimatic insights into forcing and response of monsoon rainfall," Nature, Nature, vol. 533(7602), pages 191-199, May.
    5. Feng He & Jeremy D. Shakun & Peter U. Clark & Anders E. Carlson & Zhengyu Liu & Bette L. Otto-Bliesner & John E. Kutzbach, 2013. "Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation," Nature, Nature, vol. 494(7435), pages 81-85, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagan Mandal & Jia-Yuh Yu & Shih-Yu Lee, 2022. "The Roles of Orbital and Meltwater Climate Forcings on the Southern Ocean Dynamics during the Last Deglaciation," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    2. Xiyu Dong & Gayatri Kathayat & Sune O. Rasmussen & Anders Svensson & Jeffrey P. Severinghaus & Hanying Li & Ashish Sinha & Yao Xu & Haiwei Zhang & Zhengguo Shi & Yanjun Cai & Carlos Pérez-Mejías & Jon, 2022. "Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Dawei Li & Robert M. DeConto & David Pollard & Yongyun Hu, 2024. "Competing climate feedbacks of ice sheet freshwater discharge in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Giuseppe Lucia & Davide Zanchettin & Amos Winter & Hai Cheng & Angelo Rubino & Osmín J. Vásquez & Juan Pablo Bernal & Mario Cu-Xi & Matthew S. Lachniet, 2024. "Atlantic Ocean thermal forcing of Central American rainfall over 140,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Gagan Mandal & Shih-Yu Lee & Jia-Yuh Yu, 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    7. Ye Tian & Dominik Fleitmann & Qiong Zhang & Lijuan Sha & Jasper. A. Wassenburg & Josefine Axelsson & Haiwei Zhang & Xianglei Li & Jun Hu & Hanying Li & Liang Zhao & Yanjun Cai & Youfeng Ning & Hai Che, 2023. "Holocene climate change in southern Oman deciphered by speleothem records and climate model simulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Chengfei He & Zhengyu Liu & Bette L. Otto-Bliesner & Esther C. Brady & Chenyu Zhu & Robert Tomas & Sifan Gu & Jing Han & Yishuai Jin, 2021. "Deglacial variability of South China hydroclimate heavily contributed by autumn rainfall," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Iestyn D. Barr & Matteo Spagnolo & Brice R. Rea & Robert G. Bingham & Rachel P. Oien & Kathryn Adamson & Jeremy C. Ely & Donal J. Mullan & Ramón Pellitero & Matt D. Tomkins, 2022. "60 million years of glaciation in the Transantarctic Mountains," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Li Gong & Ann Holbourn & Wolfgang Kuhnt & Bradley Opdyke & Yan Zhang & Ana Christina Ravelo & Peng Zhang & Jian Xu & Kenji Matsuzaki & Ivano Aiello & Sebastian Beil & Nils Andersen, 2023. "Middle Pleistocene re-organization of Australian Monsoon," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Fuzhi Lu & Mahyar Mohtadi & Francesco S. R. Pausata, 2024. "Dynamics of the intertropical convergence zone during the early Heinrich Stadial 1," Nature Communications, Nature, vol. 15(1), pages 1-4, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03025-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.