IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i9d10.1038_s41558-023-01738-w.html
   My bibliography  Save this article

Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise

Author

Listed:
  • J. Sutter

    (University of Bern
    University of Bern)

  • A. Jones

    (Met Office)

  • T. L. Frölicher

    (University of Bern
    University of Bern)

  • C. Wirths

    (University of Bern
    University of Bern)

  • T. F. Stocker

    (University of Bern
    University of Bern)

Abstract

Solar radiation modification (SRM) is increasingly discussed as a tool to reduce or avert global warming and concomitantly the risk of ice-sheet collapse, as is considered possible for the West Antarctic Ice Sheet (WAIS). Here we analyse the impact of stratospheric aerosol injections on the centennial-to-millennial Antarctic sea-level contribution using an ice-sheet model. We find that mid-twenty-first-century large-scale SRM could delay but ultimately not prevent WAIS collapse in a high-emissions scenario. On intermediate-emissions pathways, SRM could be an effective tool to delay or even prevent an instability of WAIS if deployed by mid-century. However, SRM interventions may be associated with substantial risks, commitments and unintended side effects; therefore, emissions reductions to prevent WAIS collapse seem to be the more practical and sensible approach at the current stage.

Suggested Citation

  • J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:9:d:10.1038_s41558-023-01738-w
    DOI: 10.1038/s41558-023-01738-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01738-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01738-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas R. Golledge & Elizabeth D. Keller & Natalya Gomez & Kaitlin A. Naughten & Jorge Bernales & Luke D. Trusel & Tamsin L. Edwards, 2019. "Global environmental consequences of twenty-first-century ice-sheet melt," Nature, Nature, vol. 566(7742), pages 65-72, February.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7469), pages 89-92, October.
    4. R. Reese & G. H. Gudmundsson & A. Levermann & R. Winkelmann, 2018. "The far reach of ice-shelf thinning in Antarctica," Nature Climate Change, Nature, vol. 8(1), pages 53-57, January.
    5. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Correction: Corrigendum: Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7472), pages 580-580, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    4. H. W. Yang & T.-W. Kim & Pierre Dutrieux & A. K. Wåhlin & Adrian Jenkins & H. K. Ha & C. S. Kim & K.-H. Cho & T. Park & S. H. Lee & Y.-K. Cho, 2022. "Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    6. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    7. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    10. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    12. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    13. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    15. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    16. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    17. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    18. Guo, Jinggang & Prestemon, Jeffrey & Johnston, Craig, 2023. "Forest market outlook in the Southern United States," Forest Policy and Economics, Elsevier, vol. 157(C).
    19. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
    20. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:9:d:10.1038_s41558-023-01738-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.