IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54535-0.html
   My bibliography  Save this article

Global mean sea level likely higher than present during the holocene

Author

Listed:
  • Roger C. Creel

    (Woods Hole Oceanographic Institution
    Columbia University)

  • Jacqueline Austermann

    (Columbia University)

  • Robert E. Kopp

    (Rutgers University)

  • Nicole S. Khan

    (University of Hong Kong)

  • Torsten Albrecht

    (Member of the Leibniz Association
    Max Planck Institute of Geoanthropology)

  • Jonathan Kingslake

    (Columbia University)

Abstract

Global mean sea-level (GMSL) change can shed light on how the Earth system responds to warming. Glaciological evidence indicates that Earth’s ice sheets retreated inland of early industrial (1850 CE) extents during the Holocene (11.7-0 ka), yet previous work suggests that Holocene GMSL never surpassed early industrial levels. We merge sea-level data with a glacial isostatic adjustment model ensemble and reconstructions of postglacial thermosteric sea-level and mountain glacier evolution to estimate Holocene GMSL and ice volume. We show it is likely (probability P = 0.75) GMSL exceeded early industrial levels after 7.5ka, reaching 0.24 m (−3.3 to 1.0 m, 90% credible interval) above present by 3.2ka; Antarctica was likely (P = 0.78) smaller than present after 7ka; GMSL rise by 2150 will very likely (P = 0.9) be the fastest in the last 5000 years; and by 2060, GMSL will as likely than not (P = 0.5) be the highest in 115,000 years.

Suggested Citation

  • Roger C. Creel & Jacqueline Austermann & Robert E. Kopp & Nicole S. Khan & Torsten Albrecht & Jonathan Kingslake, 2024. "Global mean sea level likely higher than present during the holocene," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54535-0
    DOI: 10.1038/s41467-024-54535-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54535-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54535-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eelco J. Rohling & Fiona D. Hibbert & Katharine M. Grant & Eirik V. Galaasen & Nil Irvalı & Helga F. Kleiven & Gianluca Marino & Ulysses Ninnemann & Andrew P. Roberts & Yair Rosenthal & Hartmut Schulz, 2019. "Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. K. M. Grant & E. J. Rohling & M. Bar-Matthews & A. Ayalon & M. Medina-Elizalde & C. Bronk Ramsey & C. Satow & A. P. Roberts, 2012. "Rapid coupling between ice volume and polar temperature over the past 150,000 years," Nature, Nature, vol. 491(7426), pages 744-747, November.
    3. Jennifer S. Walker & Robert E. Kopp & Christopher M. Little & Benjamin P. Horton, 2022. "Timing of emergence of modern rates of sea-level rise by 1863," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jason P. Briner & Joshua K. Cuzzone & Jessica A. Badgeley & Nicolás E. Young & Eric J. Steig & Mathieu Morlighem & Nicole-Jeanne Schlegel & Gregory J. Hakim & Joerg M. Schaefer & Jesse V. Johnson & Al, 2020. "Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century," Nature, Nature, vol. 586(7827), pages 70-74, October.
    5. Peter Huybers, 2011. "Combined obliquity and precession pacing of late Pleistocene deglaciations," Nature, Nature, vol. 480(7376), pages 229-232, December.
    6. Samantha Bova & Yair Rosenthal & Zhengyu Liu & Shital P. Godad & Mi Yan, 2021. "Seasonal origin of the thermal maxima at the Holocene and the last interglacial," Nature, Nature, vol. 589(7843), pages 548-553, January.
    7. Matthew B. Osman & Jessica E. Tierney & Jiang Zhu & Robert Tardif & Gregory J. Hakim & Jonathan King & Christopher J. Poulsen, 2021. "Globally resolved surface temperatures since the Last Glacial Maximum," Nature, Nature, vol. 599(7884), pages 239-244, November.
    8. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Jeremy D. Shakun & Peter U. Clark & Feng He & Nathaniel A. Lifton & Zhengyu Liu & Bette L. Otto-Bliesner, 2015. "Regional and global forcing of glacier retreat during the last deglaciation," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    10. Peter U. Clark & Alan C. Mix & Michael Eby & Anders Levermann & Joeri Rogelj & Alexander Nauels & David J. Wrathall, 2018. "Sea-level commitment as a gauge for climate policy," Nature Climate Change, Nature, vol. 8(8), pages 653-655, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Cartapanis & Lukas Jonkers & Paola Moffa-Sanchez & Samuel L. Jaccard & Anne Vernal, 2022. "Complex spatio-temporal structure of the Holocene Thermal Maximum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Lixiong Xiang & Xiaozhong Huang & Mingjie Sun & Virginia N. Panizzo & Chong Huang & Min Zheng & Xuemei Chen & Fahu Chen, 2023. "Prehistoric population expansion in Central Asia promoted by the Altai Holocene Climatic Optimum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jiawei Jiang & Bowen Meng & Huanye Wang & Hu Liu & Mu Song & Yuxin He & Cheng Zhao & Jun Cheng & Guoqiang Chu & Sergey Krivonogov & Weiguo Liu & Zhonghui Liu, 2024. "Spatial patterns of Holocene temperature changes over mid-latitude Eurasia," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yusuke Yokoyama & Kurt Lambeck & Patrick Deckker & Tezer M. Esat & Jody M. Webster & Masao Nakada, 2022. "Towards solving the missing ice problem and the importance of rigorous model data comparisons," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    6. Frédéric Lasserre, 2022. "Canadian Arctic Marine Transportation Issues, Opportunities and Challenges," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 15(6), February.
    7. Zhi-Ping Zhong & Jingjie Du & Stephan Köstlbacher & Petra Pjevac & Sandi Orlić & Matthew B. Sullivan, 2024. "Viral potential to modulate microbial methane metabolism varies by habitat," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    9. Jinmeng Lee & Xiaojun Yin & Honghui Zhu, 2024. "Spatial Optimization of Land Use Allocation Based on the Trade-off of Carbon Mitigation and Economic Benefits: A Study in Tianshan North Slope Urban Agglomeration," Land, MDPI, vol. 13(6), pages 1-18, June.
    10. Ilaria Tabone & Alexander Robinson & Marisa Montoya & Jorge Alvarez-Solas, 2024. "Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. E. W. Patterson & V. Skiba & A. Wolf & M. L. Griffiths & D. McGee & T. N. Bùi & M. X. Trần & T. H. Đinh & Q. Đỗ-Trọng & G. R. Goldsmith & V. Ersek & K. R. Johnson, 2024. "Local hydroclimate alters interpretation of speleothem δ18O records," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. James Walsh & Esther Widiasih, 2020. "A Discontinuous ODE Model of the Glacial Cycles with Diffusive Heat Transport," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    16. Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    17. Marco Grasso, 2022. "Legitimacy and procedural justice: how might stratospheric aerosol injection function in the public interest?," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    18. Zolghadr-Asli, Babak & McIntyre, Neil & Djordjevic, Slobodan & Farmani, Raziyeh & Pagliero, Liliana, 2023. "The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective," Agricultural Water Management, Elsevier, vol. 286(C).
    19. Bo Tan & Chengbang An & Chao Lu & Lei Tang & Lai Jiang, 2023. "The Suitability of Prehistoric Human Settlements from the Perspective of the Residents," Land, MDPI, vol. 12(12), pages 1-21, November.
    20. Ilaria Crotti & Aurélien Quiquet & Amaelle Landais & Barbara Stenni & David J. Wilson & Mirko Severi & Robert Mulvaney & Frank Wilhelms & Carlo Barbante & Massimo Frezzotti, 2022. "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54535-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.