IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7742d10.1038_s41586-019-0889-9.html
   My bibliography  Save this article

Global environmental consequences of twenty-first-century ice-sheet melt

Author

Listed:
  • Nicholas R. Golledge

    (Victoria University of Wellington
    GNS Science)

  • Elizabeth D. Keller

    (GNS Science)

  • Natalya Gomez

    (McGill University, Montreal)

  • Kaitlin A. Naughten

    (British Antarctic Survey)

  • Jorge Bernales

    (University of Bremen)

  • Luke D. Trusel

    (Rowan University)

  • Tamsin L. Edwards

    (Kings College)

Abstract

Government policies currently commit us to surface warming of three to four degrees Celsius above pre-industrial levels by 2100, which will lead to enhanced ice-sheet melt. Ice-sheet discharge was not explicitly included in Coupled Model Intercomparison Project phase 5, so effects on climate from this melt are not currently captured in the simulations most commonly used to inform governmental policy. Here we show, using simulations of the Greenland and Antarctic ice sheets constrained by satellite-based measurements of recent changes in ice mass, that increasing meltwater from Greenland will lead to substantial slowing of the Atlantic overturning circulation, and that meltwater from Antarctica will trap warm water below the sea surface, creating a positive feedback that increases Antarctic ice loss. In our simulations, future ice-sheet melt enhances global temperature variability and contributes up to 25 centimetres to sea level by 2100. However, uncertainties in the way in which future changes in ice dynamics are modelled remain, underlining the need for continued observations and comprehensive multi-model assessments.

Suggested Citation

  • Nicholas R. Golledge & Elizabeth D. Keller & Natalya Gomez & Kaitlin A. Naughten & Jorge Bernales & Luke D. Trusel & Tamsin L. Edwards, 2019. "Global environmental consequences of twenty-first-century ice-sheet melt," Nature, Nature, vol. 566(7742), pages 65-72, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0889-9
    DOI: 10.1038/s41586-019-0889-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0889-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0889-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
    3. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    6. David K. Hutchinson & Laurie Menviel & Katrin J. Meissner & Andrew McC. Hogg, 2024. "East Antarctic warming forced by ice loss during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Thomas Slater & Andrew Shepherd & Malcolm McMillan & Amber Leeson & Lin Gilbert & Alan Muir & Peter Kuipers Munneke & Brice Noël & Xavier Fettweis & Michiel Broeke & Kate Briggs, 2021. "Increased variability in Greenland Ice Sheet runoff from satellite observations," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Camille Hayatte Akhoudas & Jean-Baptiste Sallée & Gilles Reverdin & F. Alexander Haumann & Etienne Pauthenet & Christopher C. Chapman & Félix Margirier & Claire Lo Monaco & Nicolas Metzl & Julie Meill, 2023. "Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Chen Cheng & Adrian Jenkins & Paul R. Holland & Zhaomin Wang & Jihai Dong & Chengyan Liu, 2024. "Ice shelf basal channel shape determines channelized ice-ocean interactions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0889-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.