IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28751-5.html
   My bibliography  Save this article

Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica

Author

Listed:
  • H. W. Yang

    (Korea Polar Research Institute
    Seoul National University)

  • T.-W. Kim

    (Korea Polar Research Institute)

  • Pierre Dutrieux

    (Natural Environment Research Council
    Lamont-Doherty Earth Observatory of Columbia University)

  • A. K. Wåhlin

    (University of Gothenburg)

  • Adrian Jenkins

    (Northumbria University)

  • H. K. Ha

    (Inha University)

  • C. S. Kim

    (National Institute of Fisheries Science)

  • K.-H. Cho

    (Korea Polar Research Institute)

  • T. Park

    (Korea Polar Research Institute)

  • S. H. Lee

    (Korea Polar Research Institute)

  • Y.-K. Cho

    (Seoul National University)

Abstract

Recent rapid thinning of West Antarctic ice shelves are believed to be caused by intrusions of warm deep water that induce basal melting and seaward meltwater export. This study uses data from three bottom-mounted mooring arrays to show seasonal variability and local forcing for the currents moving into and out of the Dotson ice shelf cavity. A southward flow of warm, salty water had maximum current velocities along the eastern channel slope, while northward outflows of freshened ice shelf meltwater spread at intermediate depth above the western slope. The inflow correlated with the local ocean surface stress curl. At the western slope, meltwater outflows followed the warm influx along the eastern slope with a ~2–3 month delay. Ocean circulation near Dotson Ice Shelf, affected by sea ice distribution and wind, appears to significantly control the inflow of warm water and subsequent ice shelf melting on seasonal time-scales.

Suggested Citation

  • H. W. Yang & T.-W. Kim & Pierre Dutrieux & A. K. Wåhlin & Adrian Jenkins & H. K. Ha & C. S. Kim & K.-H. Cho & T. Park & S. H. Lee & Y.-K. Cho, 2022. "Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28751-5
    DOI: 10.1038/s41467-022-28751-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28751-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28751-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7469), pages 89-92, October.
    2. Tore Hattermann & Keith W. Nicholls & Hartmut H. Hellmer & Peter E. D. Davis & Markus A. Janout & Svein Østerhus & Elisabeth Schlosser & Gerd Rohardt & Torsten Kanzow, 2021. "Observed interannual changes beneath Filchner-Ronne Ice Shelf linked to large-scale atmospheric circulation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. G. D. Williams & L. Herraiz-Borreguero & F. Roquet & T. Tamura & K. I. Ohshima & Y. Fukamachi & A. D. Fraser & L. Gao & H. Chen & C. R. McMahon & R. Harcourt & M. Hindell, 2016. "The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    4. M. A. Depoorter & J. L. Bamber & J. A. Griggs & J. T. M. Lenaerts & S. R. M. Ligtenberg & M. R. van den Broeke & G. Moholdt, 2013. "Correction: Corrigendum: Calving fluxes and basal melt rates of Antarctic ice shelves," Nature, Nature, vol. 502(7472), pages 580-580, October.
    5. H. D. Pritchard & S. R. M. Ligtenberg & H. A. Fricker & D. G. Vaughan & M. R. van den Broeke & L. Padman, 2012. "Antarctic ice-sheet loss driven by basal melting of ice shelves," Nature, Nature, vol. 484(7395), pages 502-505, April.
    6. Daisuke Hirano & Takeshi Tamura & Kazuya Kusahara & Kay I. Ohshima & Keith W. Nicholls & Shuki Ushio & Daisuke Simizu & Kazuya Ono & Masakazu Fujii & Yoshifumi Nogi & Shigeru Aoki, 2020. "Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeroen Ingels & Richard B. Aronson & Craig R. Smith & Amy Baco & Holly M. Bik & James A. Blake & Angelika Brandt & Mattias Cape & David Demaster & Emily Dolan & Eugene Domack & Spencer Fire & Heidi Ge, 2021. "Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    2. J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
    3. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Daisuke Hirano & Takeshi Tamura & Kazuya Kusahara & Masakazu Fujii & Kaihe Yamazaki & Yoshihiro Nakayama & Kazuya Ono & Takuya Itaki & Yuichi Aoyama & Daisuke Simizu & Kohei Mizobata & Kay I. Ohshima , 2023. "On-shelf circulation of warm water toward the Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Manuel O. Gutierrez-Villanueva & Teresa K. Chereskin & Janet Sprintall, 2023. "Compensating transport trends in the Drake Passage frontal regions yield no acceleration in net transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    10. Tom Holt & Neil Glasser & Duncan Quincey, 2013. "The structural glaciology of southwest Antarctic Peninsula Ice Shelves (ca. 2010)," Journal of Maps, Taylor & Francis Journals, vol. 9(4), pages 523-531, December.
    11. Rongxing Li & Yuan Cheng & Tian Chang & David E. Gwyther & Martin Forbes & Lu An & Menglian Xia & Xiaohan Yuan & Gang Qiao & Xiaohua Tong & Wenkai Ye, 2023. "Satellite record reveals 1960s acceleration of Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Eliza J. Dawson & Dustin M. Schroeder & Winnie Chu & Elisa Mantelli & Hélène Seroussi, 2022. "Ice mass loss sensitivity to the Antarctic ice sheet basal thermal state," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Wang, Jianjun & Cui, Zheng, 2021. "Modeling and experiment validation of a seawater micro hydropower system for marine animal telemetry tag," Renewable Energy, Elsevier, vol. 174(C), pages 73-85.
    14. A. Slangen & M. Carson & C. Katsman & R. van de Wal & A. Köhl & L. Vermeersen & D. Stammer, 2014. "Projecting twenty-first century regional sea-level changes," Climatic Change, Springer, vol. 124(1), pages 317-332, May.
    15. Changsheng Chen & Zhaolin Lin & Robert C. Beardsley & Tom Shyka & Yu Zhang & Qichun Xu & Jianhua Qi & Huichan Lin & Danya Xu, 2021. "Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 375-399, March.
    16. Henning Åkesson & Mathieu Morlighem & Johan Nilsson & Christian Stranne & Martin Jakobsson, 2022. "Petermann ice shelf may not recover after a future breakup," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Simon Dietz & Felix Koninx, 2022. "Economic impacts of melting of the Antarctic Ice Sheet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Libao Gao & Xiaojun Yuan & Wenju Cai & Guijun Guo & Weidong Yu & Jiuxin Shi & Fangli Qiao & Zexun Wei & Guy D. Williams, 2024. "Persistent warm-eddy transport to Antarctic ice shelves driven by enhanced summer westerlies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    20. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28751-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.