IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47206-7.html
   My bibliography  Save this article

Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics

Author

Listed:
  • Maoliang Wei

    (Zhejiang University)

  • Kai Xu

    (Zhejiang University)

  • Bo Tang

    (Institute of Microelectronics of the Chinese Academy of Sciences)

  • Junying Li

    (Zhejiang University
    University of Chinese Academy of Sciences)

  • Yiting Yun

    (Zhejiang University)

  • Peng Zhang

    (Institute of Microelectronics of the Chinese Academy of Sciences)

  • Yingchun Wu

    (Westlake University
    Westlake Institute for Advanced Study)

  • Kangjian Bao

    (Westlake University
    Westlake Institute for Advanced Study)

  • Kunhao Lei

    (Zhejiang University)

  • Zequn Chen

    (Westlake University
    Westlake Institute for Advanced Study)

  • Hui Ma

    (Zhejiang University)

  • Chunlei Sun

    (Westlake University
    Westlake Institute for Advanced Study)

  • Ruonan Liu

    (Institute of Microelectronics of the Chinese Academy of Sciences)

  • Ming Li

    (Chinese Academy of Sciences)

  • Lan Li

    (Westlake University
    Westlake Institute for Advanced Study)

  • Hongtao Lin

    (Zhejiang University)

Abstract

Monolithic integration of novel materials without modifying the existing photonic component library is crucial to advancing heterogeneous silicon photonic integrated circuits. Here we show the introduction of a silicon nitride etch stop layer at select areas, coupled with low-loss oxide trench, enabling incorporation of functional materials without compromising foundry-verified device reliability. As an illustration, two distinct chalcogenide phase change materials (PCMs) with remarkable nonvolatile modulation capabilities, namely Sb2Se3 and Ge2Sb2Se4Te1, were monolithic back-end-of-line integrated, offering compact phase and intensity tuning units with zero-static power consumption. By employing these building blocks, the phase error of a push-pull Mach–Zehnder interferometer optical switch could be reduced with a 48% peak power consumption reduction. Mirco-ring filters with >5-bit wavelength selective intensity modulation and waveguide-based >7-bit intensity-modulation broadband attenuators could also be achieved. This foundry-compatible platform could open up the possibility of integrating other excellent optoelectronic materials into future silicon photonic process design kits.

Suggested Citation

  • Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47206-7
    DOI: 10.1038/s41467-024-47206-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47206-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47206-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Sun & Mark T. Wade & Yunsup Lee & Jason S. Orcutt & Luca Alloatti & Michael S. Georgas & Andrew S. Waterman & Jeffrey M. Shainline & Rimas R. Avizienis & Sen Lin & Benjamin R. Moss & Rajesh Kumar, 2015. "Single-chip microprocessor that communicates directly using light," Nature, Nature, vol. 528(7583), pages 534-538, December.
    2. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    3. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    5. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yifei Zhang & Jeffrey B. Chou & Junying Li & Huashan Li & Qingyang Du & Anupama Yadav & Si Zhou & Mikhail Y. Shalaginov & Zhuoran Fang & Huikai Zhong & Christopher Roberts & Paul Robinson & Bridget Bo, 2019. "Broadband transparent optical phase change materials for high-performance nonvolatile photonics," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Changming Wu & Heshan Yu & Seokhyeong Lee & Ruoming Peng & Ichiro Takeuchi & Mo Li, 2021. "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. J. Feldmann & M. Stegmaier & N. Gruhler & C. Ríos & H. Bhaskaran & C. D. Wright & W. H. P. Pernice, 2017. "Calculating with light using a chip-scale all-optical abacus," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    9. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    10. Rui Chen & Zhuoran Fang & Christopher Perez & Forrest Miller & Khushboo Kumari & Abhi Saxena & Jiajiu Zheng & Sarah J. Geiger & Kenneth E. Goodson & Arka Majumdar, 2023. "Non-volatile electrically programmable integrated photonics with a 5-bit operation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kiumars Aryana & Yifei Zhang & John A. Tomko & Md Shafkat Bin Hoque & Eric R. Hoglund & David H. Olson & Joyeeta Nag & John C. Read & Carlos Ríos & Juejun Hu & Patrick E. Hopkins, 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Ryan Hamerly & Saumil Bandyopadhyay & Dirk Englund, 2022. "Asymptotically fault-tolerant programmable photonics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yiwei Li & Ning An & Zheyi Lu & Yuchen Wang & Bing Chang & Teng Tan & Xuhan Guo & Xizhen Xu & Jun He & Handing Xia & Zhaohui Wu & Yikai Su & Yuan Liu & Yunjiang Rao & Giancarlo Soavi & Baicheng Yao, 2022. "Nonlinear co-generation of graphene plasmons for optoelectronic logic operations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47206-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.