IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32739-6.html
   My bibliography  Save this article

Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation

Author

Listed:
  • Wenting Wang

    (University of California)

  • Ping-Keng Lu

    (University of California)

  • Abhinav Kumar Vinod

    (University of California)

  • Deniz Turan

    (University of California)

  • James F. McMillan

    (University of California)

  • Hao Liu

    (University of California)

  • Mingbin Yu

    (Shanghai Institute of Microsystem and Information Technology
    Institute of Microelectronics, A*STAR)

  • Dim-Lee Kwong

    (Institute of Microelectronics, A*STAR)

  • Mona Jarrahi

    (University of California)

  • Chee Wei Wong

    (University of California)

Abstract

High-spectral-purity frequency-agile room-temperature sources in the terahertz spectrum are foundational elements for imaging, sensing, metrology, and communications. Here we present a chip-scale optical parametric oscillator based on an integrated nonlinear microresonator that provides broadly tunable single-frequency and multi-frequency oscillators in the terahertz regime. Through optical-to-terahertz down-conversion using a plasmonic nanoantenna array, coherent terahertz radiation spanning 2.8-octaves is achieved from 330 GHz to 2.3 THz, with ≈20 GHz cavity-mode-limited frequency tuning step and ≈10 MHz intracavity-mode continuous frequency tuning range at each step. By controlling the microresonator intracavity power and pump-resonance detuning, tunable multi-frequency terahertz oscillators are also realized. Furthermore, by stabilizing the microresonator pump power and wavelength, sub-100 Hz linewidth of the terahertz radiation with 10−15 residual frequency instability is demonstrated. The room-temperature generation of both single-frequency, frequency-agile terahertz radiation and multi-frequency terahertz oscillators in the chip-scale platform offers unique capabilities in metrology, sensing, imaging and communications.

Suggested Citation

  • Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32739-6
    DOI: 10.1038/s41467-022-32739-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32739-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32739-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seungyong Jung & Aiting Jiang & Yifan Jiang & Karun Vijayraghavan & Xiaojun Wang & Mariano Troccoli & Mikhail A. Belkin, 2014. "Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    3. Deniz Turan & Ping Keng Lu & Nezih T. Yardimci & Zhaoyu Liu & Liang Luo & Joong-Mok Park & Uttam Nandi & Jigang Wang & Sascha Preu & Mona Jarrahi, 2021. "Wavelength conversion through plasmon-coupled surface states," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Baicheng Yao & Shu-Wei Huang & Yuan Liu & Abhinav Kumar Vinod & Chanyeol Choi & Michael Hoff & Yongnan Li & Mingbin Yu & Ziying Feng & Dim-Lee Kwong & Yu Huang & Yunjiang Rao & Xiangfeng Duan & Chee W, 2018. "Gate-tunable frequency combs in graphene–nitride microresonators," Nature, Nature, vol. 558(7710), pages 410-414, June.
    5. P. Del’Haye & A. Schliesser & O. Arcizet & T. Wilken & R. Holzwarth & T. J. Kippenberg, 2007. "Optical frequency comb generation from a monolithic microresonator," Nature, Nature, vol. 450(7173), pages 1214-1217, December.
    6. Xingyuan Xu & Mengxi Tan & Bill Corcoran & Jiayang Wu & Andreas Boes & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Damien G. Hicks & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2021. "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Nature, vol. 589(7840), pages 44-51, January.
    7. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    8. Quanyong Lu & Feihu Wang & Donghai Wu & Steven Slivken & Manijeh Razeghi, 2019. "Room temperature terahertz semiconductor frequency comb," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    9. Deniz Turan & Ping Keng Lu & Nezih T. Yardimci & Zhaoyu Liu & Liang Luo & Joong-Mok Park & Uttam Nandi & Jigang Wang & Sascha Preu & Mona Jarrahi, 2021. "Author Correction: Wavelength conversion through plasmon-coupled surface states," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    10. Daryl T. Spencer & Tara Drake & Travis C. Briles & Jordan Stone & Laura C. Sinclair & Connor Fredrick & Qing Li & Daron Westly & B. Robert Ilic & Aaron Bluestone & Nicolas Volet & Tin Komljenovic & Li, 2018. "An optical-frequency synthesizer using integrated photonics," Nature, Nature, vol. 557(7703), pages 81-85, May.
    11. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    12. C.W. Berry & N. Wang & M.R. Hashemi & M. Unlu & M. Jarrahi, 2013. "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Chenduan Chen & Zhan Yang & Tao Wang & Yalun Wang & Kai Gao & Jiajia Wu & Jun Wang & Jianrong Qiu & Dezhi Tan, 2024. "Ultra-broadband all-optical nonlinear activation function enabled by MoTe2/optical waveguide integrated devices," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yiwei Li & Ning An & Zheyi Lu & Yuchen Wang & Bing Chang & Teng Tan & Xuhan Guo & Xizhen Xu & Jun He & Handing Xia & Zhaohui Wu & Yikai Su & Yuan Liu & Yunjiang Rao & Giancarlo Soavi & Baicheng Yao, 2022. "Nonlinear co-generation of graphene plasmons for optoelectronic logic operations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Ming Deng & Michele Cotrufo & Jian Wang & Jianji Dong & Zhichao Ruan & Andrea Alù & Lin Chen, 2024. "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Cansu Demirkiran & Lakshmi Nair & Darius Bunandar & Ajay Joshi, 2024. "A blueprint for precise and fault-tolerant analog neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Zhongjin Lin & Bhavin J. Shastri & Shangxuan Yu & Jingxiang Song & Yuntao Zhu & Arman Safarnejadian & Wangning Cai & Yanmei Lin & Wei Ke & Mustafa Hammood & Tianye Wang & Mengyue Xu & Zibo Zheng & Moh, 2024. "120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32739-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.