IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01506-3.html
   My bibliography  Save this article

Calculating with light using a chip-scale all-optical abacus

Author

Listed:
  • J. Feldmann

    (Institute of Physics, University of Muenster)

  • M. Stegmaier

    (Institute of Physics, University of Muenster)

  • N. Gruhler

    (Institute of Physics, University of Muenster)

  • C. Ríos

    (University of Oxford)

  • H. Bhaskaran

    (University of Oxford)

  • C. D. Wright

    (University of Exeter)

  • W. H. P. Pernice

    (Institute of Physics, University of Muenster)

Abstract

Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.

Suggested Citation

  • J. Feldmann & M. Stegmaier & N. Gruhler & C. Ríos & H. Bhaskaran & C. D. Wright & W. H. P. Pernice, 2017. "Calculating with light using a chip-scale all-optical abacus," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01506-3
    DOI: 10.1038/s41467-017-01506-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01506-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01506-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01506-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.