IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36833-1.html
   My bibliography  Save this article

Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution

Author

Listed:
  • Fan Liao

    (Soochow University)

  • Kui Yin

    (Soochow University
    Soochow University)

  • Yujin Ji

    (Soochow University)

  • Wenxiang Zhu

    (Soochow University)

  • Zhenglong Fan

    (Soochow University)

  • Youyong Li

    (Soochow University)

  • Jun Zhong

    (Soochow University)

  • Mingwang Shao

    (Soochow University)

  • Zhenhui Kang

    (Soochow University
    Macau University of Science and Technology, Taipa)

  • Qi Shao

    (Soochow University)

Abstract

Metastable metal oxides with ribbon morphologies have promising applications for energy conversion catalysis, however they are largely restricted by their limited synthesis methods. In this study, a monoclinic phase iridium oxide nanoribbon with a space group of C2/m is successfully obtained, which is distinct from rutile iridium oxide with a stable tetragonal phase (P42/mnm). A molten-alkali mechanochemical method provides a unique strategy for achieving this layered nanoribbon structure via a conversion from a monoclinic phase K0.25IrO2 (I2/m (12)) precursor. The formation mechanism of IrO2 nanoribbon is clearly revealed, with its further conversion to IrO2 nanosheet with a trigonal phase. When applied as an electrocatalyst for the oxygen evolution reaction in acidic condition, the intrinsic catalytic activity of IrO2 nanoribbon is higher than that of tetragonal phase IrO2 due to the low d band centre of Ir in this special monoclinic phase structure, as confirmed by density functional theory calculations.

Suggested Citation

  • Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36833-1
    DOI: 10.1038/s41467-023-36833-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36833-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36833-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lan Yang & Guangtao Yu & Xuan Ai & Wensheng Yan & Hengli Duan & Wei Chen & Xiaotian Li & Ting Wang & Chenghui Zhang & Xuri Huang & Jie-Sheng Chen & Xiaoxin Zou, 2018. "Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Hen Dotan & Avigail Landman & Stafford W. Sheehan & Kirtiman Deo Malviya & Gennady E. Shter & Daniel A. Grave & Ziv Arzi & Nachshon Yehudai & Manar Halabi & Netta Gal & Noam Hadari & Coral Cohen & Avn, 2019. "Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting," Nature Energy, Nature, vol. 4(9), pages 786-795, September.
    3. Jannik C. Meyer & A. K. Geim & M. I. Katsnelson & K. S. Novoselov & T. J. Booth & S. Roth, 2007. "The structure of suspended graphene sheets," Nature, Nature, vol. 446(7131), pages 60-63, March.
    4. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yong-Tae Kim & Pietro Papa Lopes & Shin-Ae Park & A-Yeong Lee & Jinkyu Lim & Hyunjoo Lee & Seoin Back & Yousung Jung & Nemanja Danilovic & Vojislav Stamenkovic & Jonah Erlebacher & Joshua Snyder & Nen, 2017. "Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    6. Xiao Huang & Shaozhou Li & Yizhong Huang & Shixin Wu & Xiaozhu Zhou & Shuzhou Li & Chee Lip Gan & Freddy Boey & Chad A. Mirkin & Hua Zhang, 2011. "Synthesis of hexagonal close-packed gold nanostructures," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    7. Dongshuang Wu & Kohei Kusada & Satoru Yoshioka & Tomokazu Yamamoto & Takaaki Toriyama & Syo Matsumura & Yanna Chen & Okkyun Seo & Jaemyung Kim & Chulho Song & Satoshi Hiroi & Osami Sakata & Toshiaki I, 2021. "Efficient overall water splitting in acid with anisotropic metal nanosheets," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Hua Gui Yang & Cheng Hua Sun & Shi Zhang Qiao & Jin Zou & Gang Liu & Sean Campbell Smith & Hui Ming Cheng & Gao Qing Lu, 2008. "Anatase TiO2 single crystals with a large percentage of reactive facets," Nature, Nature, vol. 453(7195), pages 638-641, May.
    9. Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
    10. Alexis Grimaud & Arnaud Demortière & Matthieu Saubanère & Walid Dachraoui & Martial Duchamp & Marie-Liesse Doublet & Jean-Marie Tarascon, 2017. "Erratum: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction," Nature Energy, Nature, vol. 2(2), pages 1-1, February.
    11. Mitchell C. Watts & Loren Picco & Freddie S. Russell-Pavier & Patrick L. Cullen & Thomas S. Miller & Szymon P. Bartuś & Oliver D. Payton & Neal T. Skipper & Vasiliki Tileli & Christopher A. Howard, 2019. "Production of phosphorene nanoribbons," Nature, Nature, vol. 568(7751), pages 216-220, April.
    12. Alexis Grimaud & Arnaud Demortière & Matthieu Saubanère & Walid Dachraoui & Martial Duchamp & Marie-Liesse Doublet & Jean-Marie Tarascon, 2017. "Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction," Nature Energy, Nature, vol. 2(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyu Rac Lee & Jun Kim & Doosun Hong & Ye Ji Kim & Hanhwi Jang & Hyeuk Jin Han & Chang-Kyu Hwang & Donghun Kim & Jin Young Kim & Yeon Sik Jung, 2023. "Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    9. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    12. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Danwei Liao & Jingyi Zhang & Shuochen Wang & Zhiwang Zhang & Alberto Cortijo & María A. H. Vozmediano & Francisco Guinea & Ying Cheng & Xiaojun Liu & Johan Christensen, 2024. "Visualizing the topological pentagon states of a giant C540 metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Wenjie Zang & Jaeha Lee & Peter Tieu & Xingxu Yan & George W. Graham & Ich C. Tran & Peikui Wang & Phillip Christopher & Xiaoqing Pan, 2024. "Distribution of Pt single atom coordination environments on anatase TiO2 supports controls reactivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yufen Chen & Lluís Soler & Claudio Cazorla & Jana Oliveras & Neus G. Bastús & Víctor F. Puntes & Jordi Llorca, 2023. "Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Huizhen Zhang & Pengfei Sun & Xiaozhen Fei & Xuejiao Wu & Zongyi Huang & Wanfu Zhong & Qiaobin Gong & Yanping Zheng & Qinghong Zhang & Shunji Xie & Gang Fu & Ye Wang, 2024. "Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).
    20. Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36833-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.