IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46968-4.html
   My bibliography  Save this article

Nitrogen and phosphorus trends in lake sediments of China may diverge

Author

Listed:
  • Panpan Ji

    (Lanzhou University)

  • Jianhui Chen

    (Lanzhou University)

  • Ruijin Chen

    (Lanzhou University)

  • Jianbao Liu

    (Chinese Academy of Sciences)

  • Chaoqing Yu

    (Hainan University)

  • Fahu Chen

    (Lanzhou University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The brief history of monitoring nutrient levels in Chinese lake waters limits our understanding of the causes and the long-term trends of their eutrophication and constrains effective lake management. We therefore synthesize nutrient data from lakes in China to reveal the historical changes and project their future trends to 2100 using models. Here we show that the average concentrations of nitrogen and phosphorus in lake sediments have increased by 267% and 202%, respectively since 1850. In the model projections, 2030–2100, the nitrogen concentrations in the studied lakes in China may decrease, for example, by 87% in the southern districts and by 19% in the northern districts. However, the phosphorus concentrations will continue to increase by an average of 25% in the Eastern Plain, Yunnan–Guizhou Plateau, and Xinjiang. Based on this differentiation, we suggest that nitrogen and phosphorus management in Chinese lakes should be carried out at the district level to help develop rational and sustainable environmental management strategies.

Suggested Citation

  • Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46968-4
    DOI: 10.1038/s41467-024-46968-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46968-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46968-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    2. Christine Alewell & Bruno Ringeval & Cristiano Ballabio & David A. Robinson & Panos Panagos & Pasquale Borrelli, 2020. "Global phosphorus shortage will be aggravated by soil erosion," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Jason R. Rohr & Christopher B. Barrett & David J. Civitello & Meggan E. Craft & Bryan Delius & Giulio A. DeLeo & Peter J. Hudson & Nicolas Jouanard & Karena H. Nguyen & Richard S. Ostfeld & Justin V. , 2019. "Emerging human infectious diseases and the links to global food production," Nature Sustainability, Nature, vol. 2(6), pages 445-456, June.
    4. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    5. Siyuan Cai & Xu Zhao & Cameron M. Pittelkow & Mingsheng Fan & Xin Zhang & Xiaoyuan Yan, 2023. "Optimal nitrogen rate strategy for sustainable rice production in China," Nature, Nature, vol. 615(7950), pages 73-79, March.
    6. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    7. Johan Rockström & Joyeeta Gupta & Dahe Qin & Steven J. Lade & Jesse F. Abrams & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Govindasamy Bala & Stuart E. Bunn & Daniel Ciobanu & Fabric, 2023. "Safe and just Earth system boundaries," Nature, Nature, vol. 619(7968), pages 102-111, July.
    8. T. Zou & X. Zhang & E. A. Davidson, 2022. "Global trends of cropland phosphorus use and sustainability challenges," Nature, Nature, vol. 611(7934), pages 81-87, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez-Rodriguez, Javier & Ryschawy, Julie & Grillot, Myriam & Martin, Guillaume, 2024. "Circularity and livestock diversity: Pathways to sustainability in intensive pig farming regions," Agricultural Systems, Elsevier, vol. 213(C).
    2. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    5. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    6. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    8. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    9. António Almeida & Joana Torres & Isilda Rodrigues, 2023. "The Impact of Meat Consumption on Human Health, the Environment and Animal Welfare: Perceptions and Knowledge of Pre-Service Teachers," Societies, MDPI, vol. 13(6), pages 1-20, June.
    10. Sylvain, Dernat & Bertrand, Dumont & Dominique, Vollet, 2023. "La Grange®: A generic game to reveal trade-offs and synergies among stakeholders in livestock farming areas," Agricultural Systems, Elsevier, vol. 209(C).
    11. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    12. Jones, R.E. & Speight, R.E. & Blinco, J.L. & O'Hara, I.M., 2022. "Biorefining within food loss and waste frameworks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Rob Roggema & Nico Tillie, 2022. "Realizing Emergent Ecologies: Nature-Based Solutions from Design to Implementation," Land, MDPI, vol. 11(11), pages 1-15, November.
    14. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    15. Filippini, Massimo & Srinivasan, Suchita, 2019. "Impact of religious participation, social interactions and globalization on meat consumption: Evidence from India," Energy Economics, Elsevier, vol. 84(S1).
    16. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    17. Zhang, Yang & Zhang, Yan & Gao, Yan & McLaughlin, Neil B. & Huang, Dandan & Wang, Yang & Chen, Xuewen & Zhang, Shixiu & Liang, Aizhen, 2024. "Effects of tillage practices on environment, energy, and economy of maize production in Northeast China," Agricultural Systems, Elsevier, vol. 215(C).
    18. Vayu Maini Rekdal & Casper R. B. Luijt & Yan Chen & Ramu Kakumanu & Edward E. K. Baidoo & Christopher J. Petzold & Pablo Cruz-Morales & Jay D. Keasling, 2024. "Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Paul Fesenfeld, Lukas & Maier, Maiken & Brazzola, Nicoletta & Stolz, Niklas & Sun, Yixian & Kachi, Aya, 2023. "How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change," Food Policy, Elsevier, vol. 117(C).
    20. Stads, Gert-Jan & Wiebe, Keith D. & Nin-Pratt, Alejandro & Sulser, Timothy B. & Benfica, Rui & Reda, Fasil & Khetarpal, Ravi, 2022. "Research for the future: Investments for efficiency, sustainability, and equity," IFPRI book chapters, in: 2022 Global food policy report: Climate change and food systems, chapter 4, pages 38-47, International Food Policy Research Institute (IFPRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46968-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.