IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48217-0.html
   My bibliography  Save this article

Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces

Author

Listed:
  • Hikari Manako

    (Tokyo University of Science)

  • Shoya Ohsumi

    (Tokyo University of Science)

  • Yoshiki J. Sato

    (Tokyo University of Science
    Saitama University)

  • R. Okazaki

    (Tokyo University of Science)

  • D. Aoki

    (Tohoku University)

Abstract

Transverse thermoelectric effect, the conversion of longitudinal heat current into transverse electric current, or vice versa, offers a promising energy harvesting technology. Materials with axis-dependent conduction polarity, known as p × n-type conductors or goniopolar materials, are potential candidate, because the non-zero transverse elements of thermopower tensor appear under rotational operation, though the availability is highly limited. Here, we report that a ternary metal LaPt2B with unique crystal structure exhibits axis-dependent thermopower polarity, which is driven by mixed-dimensional Fermi surfaces consisting of quasi-one-dimensional hole sheet with out-of-plane velocity and quasi-two-dimensional electron sheets with in-plane velocity. The ideal mixed-dimensional conductor LaPt2B exhibits an extremely large transverse Peltier conductivity up to ∣αyx∣ = 130 A K−1 m−1, and its transverse thermoelectric performance surpasses those of topological magnets utilizing the anomalous Nernst effect. These results thus manifest the mixed-dimensionality as a key property for efficient transverse thermoelectric conversion.

Suggested Citation

  • Hikari Manako & Shoya Ohsumi & Yoshiki J. Sato & R. Okazaki & D. Aoki, 2024. "Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48217-0
    DOI: 10.1038/s41467-024-48217-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48217-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48217-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Takahashi & R. Okazaki & S. Ishiwata & H. Taniguchi & A. Okutani & M. Hagiwara & I. Terasaki, 2016. "Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    2. Akito Sakai & Susumu Minami & Takashi Koretsune & Taishi Chen & Tomoya Higo & Yangming Wang & Takuya Nomoto & Motoaki Hirayama & Shinji Miwa & Daisuke Nishio-Hamane & Fumiyuki Ishii & Ryotaro Arita & , 2020. "Iron-based binary ferromagnets for transverse thermoelectric conversion," Nature, Nature, vol. 581(7806), pages 53-57, May.
    3. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi Gautam & Takamasa Hirai & Abdulkareem Alasli & Hosei Nagano & Tadakatsu Ohkubo & Ken-ichi Uchida & Hossein Sepehri-Amin, 2024. "Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    3. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Bang, Ki Mun & Park, Sang J. & Yu, Hyun & Jin, Hyungyu, 2024. "Large transverse thermopower in shape-engineered tilted leg thermopile," Applied Energy, Elsevier, vol. 368(C).
    5. Kohei Fujiwara & Yasuyuki Kato & Hitoshi Abe & Shun Noguchi & Junichi Shiogai & Yasuhiro Niwa & Hiroshi Kumigashira & Yukitoshi Motome & Atsushi Tsukazaki, 2023. "Berry curvature contributions of kagome-lattice fragments in amorphous Fe–Sn thin films," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48217-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.