IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34444-w.html
   My bibliography  Save this article

An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction

Author

Listed:
  • Lei Huang

    (Huazhong University of Science and Technology (HUST))

  • Min Wei

    (Wuhan University)

  • Ruijuan Qi

    (East China Normal University)

  • Chung-Li Dong

    (Tamkang University)

  • Dai Dang

    (Guangdong University of Technology)

  • Cheng-Chieh Yang

    (Tamkang University)

  • Chenfeng Xia

    (Huazhong University of Science and Technology (HUST))

  • Chao Chen

    (Guangdong University of Technology)

  • Shahid Zaman

    (Huazhong University of Science and Technology (HUST))

  • Fu-Min Li

    (Huazhong University of Science and Technology (HUST))

  • Bo You

    (Huazhong University of Science and Technology (HUST))

  • Bao Yu Xia

    (Huazhong University of Science and Technology (HUST))

Abstract

Efficient and robust platinum-carbon electrocatalysts are of great significance for the long-term service of high-performance fuel cells. Here, we report a Pt alloy integrated in a cobalt-nitrogen-nanocarbon matrix by a multiscale design principle for efficient oxygen reduction reaction. This Pt integrated catalyst demonstrates an increased mass activity, 11.7 times higher than that of commercial Pt catalyst, and retains a stability of 98.7% after 30,000 potential cycles. Additionally, this integrated catalyst delivers a current density of 1.50 A cm−2 at 0.6 V in the hydrogen-air fuel cell and achieves a power density of 980 mW cm−2. Comprehensive investigations demonstrate that the synergistic contribution of components and structure in the platinum-carbon integrated catalyst is responsible for the high-efficiency ORR in fuel cells.

Suggested Citation

  • Lei Huang & Min Wei & Ruijuan Qi & Chung-Li Dong & Dai Dang & Cheng-Chieh Yang & Chenfeng Xia & Chao Chen & Shahid Zaman & Fu-Min Li & Bo You & Bao Yu Xia, 2022. "An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34444-w
    DOI: 10.1038/s41467-022-34444-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34444-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34444-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    2. Jiantao Fan & Ming Chen & Zhiliang Zhao & Zhen Zhang & Siyu Ye & Shaoyi Xu & Haijiang Wang & Hui Li, 2021. "Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells," Nature Energy, Nature, vol. 6(5), pages 475-486, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    3. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    4. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    5. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    6. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    7. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    8. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    9. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    10. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    11. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    12. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    13. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    14. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    15. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Lochner, Tim & Hallitzky, Laurens & Perchthaler, Markus & Obermaier, Michael & Sabawa, Jarek & Enz, Simon & Bandarenka, Aliaksandr S., 2020. "Local degradation effects in automotive size membrane electrode assemblies under realistic operating conditions," Applied Energy, Elsevier, vol. 260(C).
    17. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    18. Sara Bakhtavar & Mehdi Mehrpooya & Mahboobeh Manoochehri & Mehrnoosh Karimkhani, 2022. "Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    19. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    20. Caleb Gyan-Barimah & Jagannath Sai Pavan Mantha & Ha-Young Lee & Yi Wei & Cheol-Hwan Shin & Muhammad Irfansyah Maulana & Junki Kim & Graeme Henkelman & Jong-Sung Yu, 2024. "High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34444-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.