IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44871-6.html
   My bibliography  Save this article

Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure

Author

Listed:
  • Ian Cone

    (Imperial College London)

  • Claudia Clopath

    (Imperial College London)

Abstract

To successfully learn real-life behavioral tasks, animals must pair actions or decisions to the task’s complex structure, which can depend on abstract combinations of sensory stimuli and internal logic. The hippocampus is known to develop representations of this complex structure, forming a so-called “cognitive map”. However, the precise biophysical mechanisms driving the emergence of task-relevant maps at the population level remain unclear. We propose a model in which plateau-based learning at the single cell level, combined with reinforcement learning in an agent, leads to latent representational structures codependently evolving with behavior in a task-specific manner. In agreement with recent experimental data, we show that the model successfully develops latent structures essential for task-solving (cue-dependent “splitters”) while excluding irrelevant ones. Finally, our model makes testable predictions concerning the co-dependent interactions between split representations and split behavioral policy during their evolution.

Suggested Citation

  • Ian Cone & Claudia Clopath, 2024. "Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44871-6
    DOI: 10.1038/s41467-024-44871-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44871-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44871-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathaniel R. Kinsky & William Mau & David W. Sullivan & Samuel J. Levy & Evan A. Ruesch & Michael E. Hasselmo, 2020. "Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Christine Grienberger & Jeffrey C. Magee, 2022. "Entorhinal cortex directs learning-related changes in CA1 representations," Nature, Nature, vol. 611(7936), pages 554-562, November.
    3. Edward H. Nieh & Manuel Schottdorf & Nicolas W. Freeman & Ryan J. Low & Sam Lewallen & Sue Ann Koay & Lucas Pinto & Jeffrey L. Gauthier & Carlos D. Brody & David W. Tank, 2021. "Geometry of abstract learned knowledge in the hippocampus," Nature, Nature, vol. 595(7865), pages 80-84, July.
    4. Dileep George & Rajeev V. Rikhye & Nishad Gothoskar & J. Swaroop Guntupalli & Antoine Dedieu & Miguel Lázaro-Gredilla, 2021. "Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Attila Losonczy & Judit K. Makara & Jeffrey C. Magee, 2008. "Compartmentalized dendritic plasticity and input feature storage in neurons," Nature, Nature, vol. 452(7186), pages 436-441, March.
    6. Christine Grienberger & Jeffrey C. Magee, 2022. "Author Correction: Entorhinal cortex directs learning-related changes in CA1 representations," Nature, Nature, vol. 612(7938), pages 8-8, December.
    7. Dmitriy Aronov & Rhino Nevers & David W. Tank, 2017. "Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit," Nature, Nature, vol. 543(7647), pages 719-722, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Albert M. Barth & Marta Jelitai & Maria Flora Vasarhelyi-Nagy & Viktor Varga, 2023. "Aversive stimulus-tuned responses in the CA1 of the dorsal hippocampus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Linda Judák & Balázs Chiovini & Gábor Juhász & Dénes Pálfi & Zsolt Mezriczky & Zoltán Szadai & Gergely Katona & Benedek Szmola & Katalin Ócsai & Bernadett Martinecz & Anna Mihály & Ádám Dénes & Bálint, 2022. "Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Ruy Gómez-Ocádiz & Massimiliano Trippa & Chun-Lei Zhang & Lorenzo Posani & Simona Cocco & Rémi Monasson & Christoph Schmidt-Hieber, 2022. "A synaptic signal for novelty processing in the hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Eleanor Spens & Neil Burgess, 2024. "A generative model of memory construction and consolidation," Nature Human Behaviour, Nature, vol. 8(3), pages 526-543, March.
    10. Kevin K. Sit & Michael J. Goard, 2023. "Coregistration of heading to visual cues in retrosplenial cortex," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Babak Shahbaba & Lingge Li & Forest Agostinelli & Mansi Saraf & Keiland W. Cooper & Derenik Haghverdian & Gabriel A. Elias & Pierre Baldi & Norbert J. Fortin, 2022. "Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    14. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Dejan Pecevski & Lars Buesing & Wolfgang Maass, 2011. "Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-25, December.
    16. Eunji Kong & Kyu-Hee Lee & Jongrok Do & Pilhan Kim & Doyun Lee, 2023. "Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Paul M. Torrens, 2024. "Ten Traps for Non-Representational Theory in Human Geography," Geographies, MDPI, vol. 4(2), pages 1-34, April.
    18. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Srinivasan, Aditya & Srinivasan, Arvind & Goodman, Michael R. & Riceberg, Justin S. & Guise, Kevin G. & Shapiro, Matthew L., 2023. "Hippocampal and Medial Prefrontal Cortex Fractal Spiking Patterns Encode Episodes and Rules," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    20. Robert Legenstein & Niko Wilbert & Laurenz Wiskott, 2010. "Reinforcement Learning on Slow Features of High-Dimensional Input Streams," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44871-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.