IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53690-8.html
   My bibliography  Save this article

Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking

Author

Listed:
  • Terra A. Schall

    (University of Pittsburgh)

  • King-Lun Li

    (University of Pittsburgh)

  • Xiguang Qi

    (University of Pittsburgh)

  • Brian T. Lee

    (Carnegie Mellon University)

  • William J. Wright

    (University of Pittsburgh)

  • Erin E. Alpaugh

    (University of Pittsburgh)

  • Rachel J. Zhao

    (University of Pittsburgh)

  • Jianwei Liu

    (University of Pittsburgh)

  • Qize Li

    (University of Pittsburgh)

  • Bo Zeng

    (University of Pittsburgh)

  • Lirong Wang

    (University of Pittsburgh)

  • Yanhua H. Huang

    (University of Pittsburgh)

  • Oliver M. Schlüter

    (University of Pittsburgh)

  • Eric J. Nestler

    (Icahn School of Medicine at Mount Sinai)

  • Edward H. Nieh

    (University of Virginia)

  • Yan Dong

    (University of Pittsburgh
    University of Pittsburgh)

Abstract

The nucleus accumbens (NAc) regulates reward-motivated behavior, but the temporal dynamics of NAc neurons that enable “free-willed” animals to obtain rewards remain elusive. Here, we recorded Ca2+ activity from individual NAc neurons when mice performed self-paced lever-presses for sucrose. NAc neurons exhibited three temporally-sequenced clusters, defined by times at which they exhibited increased Ca2+ activity: approximately 0, −2.5 or −5 sec relative to the lever-pressing. Dopamine D1 receptor (D1)-expressing neurons and D2-neurons formed the majority of the −5-sec versus −2.5-sec clusters, respectively, while both neuronal subtypes were represented in the 0-sec cluster. We found that pre-press activity patterns of D1- or D2-neurons could predict subsequent lever-presses. Inhibiting D1-neurons at −5 sec or D2-neurons at −2.5 sec, but not at other timepoints, reduced sucrose-motivated lever-pressing. We propose that the time-specific activity of D1- and D2-neurons mediate key temporal features of the NAc through which reward motivation initiates reward-seeking behavior.

Suggested Citation

  • Terra A. Schall & King-Lun Li & Xiguang Qi & Brian T. Lee & William J. Wright & Erin E. Alpaugh & Rachel J. Zhao & Jianwei Liu & Qize Li & Bo Zeng & Lirong Wang & Yanhua H. Huang & Oliver M. Schlüter , 2024. "Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53690-8
    DOI: 10.1038/s41467-024-53690-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53690-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53690-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Denise J. Cai & Daniel Aharoni & Tristan Shuman & Justin Shobe & Jeremy Biane & Weilin Song & Brandon Wei & Michael Veshkini & Mimi La-Vu & Jerry Lou & Sergio E. Flores & Isaac Kim & Yoshitake Sano & , 2016. "A shared neural ensemble links distinct contextual memories encoded close in time," Nature, Nature, vol. 534(7605), pages 115-118, June.
    2. Matthew Baker & Seungwoo Kang & Sa-Ik Hong & Minryung Song & Minsu Abel Yang & Lee Peyton & Hesham Essa & Sang Wan Lee & Doo-Sup Choi, 2023. "External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Christophe Varin & Amandine Cornil & Delphine Houtteman & Patricia Bonnavion & Alban Kerchove d’Exaerde, 2023. "The respective activation and silencing of striatal direct and indirect pathway neurons support behavior encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Edward H. Nieh & Manuel Schottdorf & Nicolas W. Freeman & Ryan J. Low & Sam Lewallen & Sue Ann Koay & Lucas Pinto & Jeffrey L. Gauthier & Carlos D. Brody & David W. Tank, 2021. "Geometry of abstract learned knowledge in the hippocampus," Nature, Nature, vol. 595(7865), pages 80-84, July.
    5. Carina Soares-Cunha & Barbara Coimbra & Ana David-Pereira & Sonia Borges & Luisa Pinto & Patricio Costa & Nuno Sousa & Ana J. Rodrigues, 2016. "Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    6. Roman Walle & Anna Petitbon & Giulia R. Fois & Christophe Varin & Enrica Montalban & Lola Hardt & Andrea Contini & Maria Florencia Angelo & Mylène Potier & Rodrigue Ortole & Asma Oummadi & Véronique S, 2024. "Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Shiaoching Gong & Chen Zheng & Martin L. Doughty & Kasia Losos & Nicholas Didkovsky & Uta B. Schambra & Norma J. Nowak & Alexandra Joyner & Gabrielle Leblanc & Mary E. Hatten & Nathaniel Heintz, 2003. "A gene expression atlas of the central nervous system based on bacterial artificial chromosomes," Nature, Nature, vol. 425(6961), pages 917-925, October.
    8. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    9. Xin Jin & Rui M. Costa, 2010. "Start/stop signals emerge in nigrostriatal circuits during sequence learning," Nature, Nature, vol. 466(7305), pages 457-462, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Fan Zeng & Ke-Xin Yang & Yilong Cui & Xiao-Na Zhu & Rui Li & Hanqing Zhang & Dong Chuan Wu & Raymond C. Stevens & Ji Hu & Ning Zhou, 2024. "Conjunctive encoding of exploratory intentions and spatial information in the hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Roman Walle & Anna Petitbon & Giulia R. Fois & Christophe Varin & Enrica Montalban & Lola Hardt & Andrea Contini & Maria Florencia Angelo & Mylène Potier & Rodrigue Ortole & Asma Oummadi & Véronique S, 2024. "Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Marie A. Labouesse & Arturo Torres-Herraez & Muhammad O. Chohan & Joseph M. Villarin & Julia Greenwald & Xiaoxiao Sun & Mysarah Zahran & Alice Tang & Sherry Lam & Jeremy Veenstra-VanderWeele & Clay O., 2023. "A non-canonical striatopallidal Go pathway that supports motor control," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    6. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
    7. Alessandro Albano & José Luis García-Lapresta & Antonella Plaia & Mariangela Sciandra, 2023. "A family of distances for preference–approvals," Annals of Operations Research, Springer, vol. 323(1), pages 1-29, April.
    8. Brandon W. Hughes & Jessica L. Huebschman & Evgeny Tsvetkov & Benjamin M. Siemsen & Kirsten K. Snyder & Rose Marie Akiki & Daniel J. Wood & Rachel D. Penrod & Michael D. Scofield & Stefano Berto & Mak, 2024. "NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Tadaaki Nishioka & Suthinee Attachaipanich & Kosuke Hamaguchi & Michael Lazarus & Alban Kerchove d’Exaerde & Tom Macpherson & Takatoshi Hikida, 2023. "Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    11. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Han Yu & Brian Chapman & Arianna Di Florio & Ellen Eischen & David Gotz & Mathews Jacob & Rachael Hageman Blair, 2019. "Bootstrapping estimates of stability for clusters, observations and model selection," Computational Statistics, Springer, vol. 34(1), pages 349-372, March.
    13. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    14. Joana Mendes Duarte & Robin Nguyen & Marios Kyprou & Kaizhen Li & Anastasija Milentijevic & Carlo Cerquetella & Thomas Forro & Stéphane Ciocchi, 2024. "Hippocampal contextualization of social rewards in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Matthew Whitaker & Joshua Elliott & Marc Chadeau-Hyam & Steven Riley & Ara Darzi & Graham Cooke & Helen Ward & Paul Elliott, 2022. "Persistent COVID-19 symptoms in a community study of 606,434 people in England," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Clara Morral & Arshad Ayyaz & Hsuan-Cheng Kuo & Mardi Fink & Ioannis I. Verginadis & Andrea R. Daniel & Danielle N. Burner & Lucy M. Driver & Sloane Satow & Stephanie Hasapis & Reem Ghinnagow & Lixia , 2024. "p53 promotes revival stem cells in the regenerating intestine after severe radiation injury," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Stancu Stelian & Pernici Andreea, 2023. "Assessing the Evolution of the Energy Mix Worldwide, with a Focus on the Renewable Energy Transition," Management & Marketing, Sciendo, vol. 18(s1), pages 384-397, December.
    20. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53690-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.